Google Search

Search

Already a Member ?

Best Business Opportunities in Bihar - Identification and Selection of right Project, Thrust areas for Investment, Industry Startup and Entrepreneurship Projects

Agro and Food Processing: Project Opportunities in Bihar

PROFILE:

Indian food processing industry is widely recognized as a 'sunrise industry' having huge potential for uplifting agricultural economy, creation of large scale processed food manufacturing and food chain facilities, and the resultant generation of employment and export earnings. The food processing sector in India is geared to meet the international standards. Food Safety and Standards Authority of India has the mandate to develop standards and also to harmonise the same with International Standards consistent with food hygiene and food safety requirement and to the conditions of India's food industry.

RESOURCES:

Bihar is the seventh largest economy in India in terms of food production. Bihar is the leading State in the production of fruits and vegetables. It is the first largest producer of vegetables and second largest producer of fruits in the country. There exists huge scope of investment in the food-processing sector in the State. Private sector participation is being encouraged in packaging and food processing sectors to ensure better quality. Also, the State welcomes private investment for comprehensive development of tea industry and capital subsidy is available for setting up tea processing units. Even as the state of Bihar is being talked of as the next big hope for agriculture sector in the country, this sector also remains the most crucial factor for the state economy.

GOVERNMENT POLICIES:

In India, agricultural trade policy is a part of a larger food and agriculture policy regime that seeks to maintain food self-sufficiency while providing income support to the agricultural sector and poor consumers. The Government of India (GOI) uses a variety of policy instruments in attempting to achieve these goals, including:

•        Domestic subsidies to inputs, outputs, transportation, storage, and consumption to reduce producer costs and consumer prices.

•        Border measures such as subsidies, tariffs, quotas, and non-tariff measures to protect domestic producers from import competition, manage domestic price levels, and guarantee domestic supply.

The National Policy on Agriculture seeks to actualise the vast untapped growth potential of Indian agriculture, strengthen rural infrastructure to support faster agricultural development, promote value addition, accelerate the growth of agro business, create employment in rural areas, secure a fair standard of living for the farmers and agricultural workers and their families, discourage migration to urban areas and face the challenges arising out of economic liberalization and globalisation. Over the next two decades, it aims to attain:

•        A growth rate in excess of 4 per cent per annum in the agriculture sector;

•        Growth that is based on efficient use of resources and conserves our soil, water and bio-diversity;

•        Growth with equity, i.e., growth which is widespread across regions and farmers;

•        Growth that is demand driven and caters to domestic markets and maximises benefits from exports of agricultural products in the face of the challenges arising from economic liberalization and globalisation;

•        Growth that is sustainable technologically, environmentally and economically.

The policy seeks to promote technically sound, economically viable, environmentally non-degrading, and socially acceptable use of country’s natural resources - land, water and genetic endowment to promote sustainable development of agriculture.

 

Sugar: Project Opportunities in Bihar

PROFILE:

Sugar is one of the oldest commodities in the world and traces its origin in 4th century AD in India and China. Indian sugar industry is highly fragmented with organized and unorganized players. There are 453 sugar mills in India. Co-operative sector has 252 mills and private sector has 134 mills. Public sector boasts of around 67 mills.

RESOURCES:

Sugar industry is the largest agro-based industry in Bihar. This industry generates sizeable employment in the farm sector directly as well as through ancillary industries and related activities. It is estimated that about five lakh farmers and their dependents are engaged in the cultivation of sugarcane and approximately another half a lakh unskilled and skilled personnel, including highly qualified and trained technologists are engaged in the sugar industry in the State.

GOVERNMENT POLICIES:

The Commerce Ministry has formally issued a trade notice allowing export of sugar, subject to a quantitative ceiling of 10,00,000 tones for the licensing year 2000-01. The public notice dated 14th August' 2000 has been placed at the disposal of Agricultural and Processed Food Products Exports Development Authority (APEDA) for the purpose of issuing Registration-cum-Allocation Certificates (RCAC) to individual exporters. The Government had already announced that the exporters would be exempt from the mandatory levy for the quantity of sugar exported. The country expects to produce more than 18 million tons of sugar during October 1999-September 2000 along with a carryover stock of 6.7 metric tons from the previous season.      

Textiles: Project Opportunities in Bihar

PROFILE:

The textile industry occupies a unique place in our country. One of the earliest to come into existence in India, it accounts for 14% of the total Industrial production, contributes to nearly 30% of the total exports and is the second largest employment generator after agriculture. Textile Industry is providing one of the most basic needs of people and the holds importance; maintaining sustained growth for improving quality of life. It has a unique position as a self-reliant industry, from the production of raw materials to the delivery of finished products, with substantial value-addition at each stage of processing; it is a major contribution to the country's economy.

RESOURCES:

Textile sector offers huge potential to the investors. The State has strong weaving traditions. The total number of weavers in the State is over 90,000. The major locations for the textile industry are Bhagalpur, Gaya, Nalanda, Darbhanga, Madhubani, Siwan and Patna. Bihar is the country's second State after West Bengal in jute production and jute textiles. Due to availability of raw jute, cheap labour, sufficient power, water and transportation in northern part of Bihar, some jute mills are located in this region. Jute mills are located in Karbisganj in Purnia district, Katibar, Muktapur in Samstipur district

GOVERNMENT POLICIES:

The Ministry of Textiles in India has formulated numerous policies and schemes for the development of the textile industry in India. The government of India has been following a policy of promoting and encouraging the handloom sector through a number of programmes. Most of the schematic interventions of the government of India in the ninth and tenth plan period have been through the state agencies and co-operative societies in the handloom industries. Some of the major acts relating to textile industry include: Central Silk Board Act, 1948, The Textiles Committee Act, 1963, The Handlooms Act, 1985, Cotton Control Order, 1986, The Textile Undertakings Act, 1995 Government of India is earnestly trying to provide all the relevant facilities for the textile industry to utilize its full potential and achieve the target. The textile industry is presently experiencing an average annual growth rate of 9-10% and is expected to grow at a rate of 16% in value, which will eventually reach the target of US $ 115 billion by 2012. The clothing and apparel sector are expected to grow at a rate of 21 %t in value terms.

Leather: Project Opportunities in Bihar

PROFILE:

Leather and allied industries in India play an important role in terms of providing employment to the large number of artisans and also earning foreign exchange through exports. The major factors responsible for the growth of Indian leather industry are availability of raw materials (hides and skins), cheaper labour, technology and Government policy support. Indian Leather sector exports account for Rs.10691 crores and provides direct employment to more than 2.5 million people and among them many belong to socially and economically backward communities.

RESOURCES:

Bihar has sizeable share of goat and cattle population of the country. Bihar is known for the best quality of cow hides, buff calf skins & goat skins since Bihar is very rich in cattle population. It produces 2.64 million bovine hides per annum. State has tanneries as well as footwear units in the private sector. In case of goats, Bihar state accounts for third rank in the country next only to West Bengal and Rajasthan. The leather tanning industry in Bihar consists of three important segments

(i)       Units established under Bihar Leather Development Corporation (BLDC) and its sister concern viz. Bihar Finished Leather ltd.

(ii)      a few private tanneries working at Muzaffarpur

(iii)     BATA tannery at Mokhamaghat

GOVERNMENT POLICIES:

Government policies in support of the industry are:

• The entire leather sector is now de-licensed and de-reserved, paving way for expansion on modern lines with state-of-the art machinery and equipment

• 100% Foreign Direct Investment and Joint Ventures permitted through the automatic route

• 100% repatriation of profit and dividends, if investments made in convertible foreign currency. Only declaration to this effect to the Reserve Bank is required.

• Promotion of industrial parks (one leather park in Andhra Pradesh, one leather goods park in West Bengal, one footwear park in Tamil Nadu and one footwear components park in Chennai).

• Funding support for modernizing manufacturing facilities 

• Funding support for establishing design studios

• Duty free import of raw materials (namely raw skins, hides, semi-finished leather and finished leather) and of embellishments and components under specific scheme

• Concessional duty on import of specified machinery for use in leather sector

• Duty neutralization / remission scheme 

 

Mineral: Project Opportunities in Bihar

PROFILE:

Minerals are non renewable and limited natural resources and constitute vital raw materials in a number of basic and important industries. India has a large number of economically useful minerals and they constitute one-quarter of the world's known mineral resources. India produces 89 minerals out of which 4 are fuel minerals, 11 metallic, 52 non-metallic and 22 minor minerals

RESOURCES:

Bihar is a producer of Steatite (945 tonnes), Pyrites (9,539 tonnes/year), Quartzite (14,865 tonnes/year), Crude Mica (53 tonnes/year), Limestone (4,78,000 tonnes/year). Bihar has also some good resource of Bauxite in Jamui district, Cement Morter in Bhabhua, Dolomite in Bhabhua, Glass sand in Bhabhua, Mica in Muzaffarpur, Nawada, Jamui, Gaya and salt in Gaya and Jamui.

GOVERNMENT POLICIES:

NATIONAL MINERAL POLICY, 2008

Keeping in view the long term national goals and perspective for exploitation of minerals, Government of India has revised its earlier National Mineral Policy, 1993 and came up with a new National Mineral Policy 2008. Basic goals of NMP 2008 are-

1.       Regional and detailed exploration using state of the art techniques in time bound manner.

2.       Zero waste mining

For achieving the above goals, important changes envisaged are:

•        Creation of improved regulatory environment to make it more conducive to investment and technology flows

•        Transparency in allocation of concessions

•        Preference for value addition

•        Development of proper inventory of resources and reserves

•        Enforcement of mining plans for adoption of proper mining methods and   optimum utilization of minerals 

•        Data filing requirements will be rigorously monitored

•        Old disused mining sites will be used for plantation or for other useful purposes.

•        Mining infrastructure will be upgraded through PPP initiatives

•        State PSU involved in mining sector will be modernized

•        State Directorate will be strengthened to enable it to regulate   mining in a proper way and to check illegal mining

•        There will be arms length distance between State agencies that mine  and those that regulate

•        Use of machinery and equipment which improve the efficiency,

•        Productivity and economics of mining operation, safety and health of workers and others will be encouraged.

 

Tourism: Project Opportunities in Bihar

PROFILE:

Tourism has become an important industry in many countries of the world, both in the east and the west. Various initiatives are being taken by the Government and other organizations to promote tourism here. Tourism in India is the largest service industry, with a contribution of 6.23% to the national GDP and 8.78% of the total employment in India. India's rich history and its cultural and geographical diversity make its international tourism appeal large and diverse. It presents heritage and cultural tourism along with medical, business and sports tourism. India has one of the largest and fastest growing medical tourism sectors.

RESOURCES:

Bihar promises development of tourism to its optimum level. Rich in its historical traditions and ancient splendour, the culturally rich Bihar has derived its name from "Vihar". It has the sacred Ganga River as its lifeline and huge water mass in form of many rivers and rivulets in North Bihar, the Gandak, Kosi and many more and the vitally important Son River which forms the lifeline in South Bihar. With its rich heritage of antiques, artifacts, historical facts and figures going into its favour, Bihar is a blend of beautiful and bountiful nature, natural resources, the vital sparkling pure water, important archaeological finds, and rich culture. Herein, lies the history of the young prince of Nepal, Siddharth, transforming into Lord Buddha by getting enlightenment through sheer penance at Bodh Gaya under the sacred Bodhi tree which is attracting the Buddhists tourists for ages from across the world. Bihar has 22 Nirvan Sthals of 24 Jain Tirthankars attracting the people following the Jain religion. Development of these tourist's sites has been undertaken on a large scale to promote religious tourism.

Tourism has established itself as 'smokeless' industry in the world and its role in the socio-economic development of a country is well established. Bihar government has also given tourism the status of industry and development works in this pursuit have been undertaken.

GOVERNMENT POLICIES:

In order to develop tourism in India in a systematic manner, position it as a major engine of economic growth and to harness its direct and multiplier effects for employment and poverty eradication in an environmentally sustainable manner, the National Tourism Policy was formulated in the year 2002. Broadly, the “Policy” attempts to:-

•        Position tourism as a major engine of economic growth;

•        Harness the direct and multiplier effects of tourism for employment generation, economic development and providing impetus to rural tourism;

•        Focus on domestic tourism as a major driver of tourism growth.

•        Position India as a global brand to take advantage of the burgeoning global travel trade and the vast untapped potential of India as a destination;

•        Acknowledges the critical role of private sector with government working as a pro-active facilitator and catalyst;

•        Create and develop integrated tourism circuits based on India’s unique civilization, heritage, and culture in partnership with States, private sector and other agencies; and

•        Ensure that the tourist to India gets physically invigorated, mentally rejuvenated, culturally enriched, spiritually elevated and “feel India from within”.

 

Animal Husbandry: Project Opportunities in Bihar

PROFILE:

A large number of farmers in India depend on animal husbandry for their livelihood. In addition to supplying milk, meat, eggs, and hides, animals, mainly bullocks, are the major source of power for both farmers and drayers. Thus, animal husbandry plays an important role in the rural economy. Today, India has the world's largest dairy herd (composed of cows and buffaloes), about 300 million strong, and is second only to the United States in milk production. India is also the world’s third largest global producer of eggs and the world’s sixth largest producer of poultry meat.

RESOURCES:

Animal husbandry is a core sector of the State economy. Being the 5th largest goat population state, Bihar contributes about 7.63% of India's total goat population. The state is also a habitat of 42.6% people below poverty line and hence there is a tremendous scope of goat farming to meet up the large gap between demand and supply of meat. Around 574000 goats are slaughtered annually in recognized slaughterhouses contributing 31.17% of total meat production of the state (175 thousand tonnes of meat in 2003). However, goat rearing is not well accepted by all classes of people in Bihar. According to economic census 2003, the total livestock population in the state was 407.83 lakh. Of this, 39.8 per cent are milch animals with 104.7 lakh cows and 57.66 lakh buffaloes.

 

GOVERNMENT POLICIES:

Components of the scheme for animal husbandry are the following:

•        streamlining storage and supply of Liquid Nitrogen by sourcing supply from industrial gas manufacturers and setting up bulk transport and storage systems for the same;

•        introduction of quality bulls with high genetic merit;

•        promotion of private mobile A.I. service for doorstep delivery of A.I.;

•        conversion of existing stationery government centres into mobiles centres;

•        quality control and certification of bulls and services at sperm stations, semen banks and training institutions;

•        study of breeding systems in areas out of reach of A.I.;

•        refresher training to existing AI workers, basic training to rural unemployed youth, training to professionals and organization of farmers orientation programmes; and

•        institutional restructuring by way of entrusting the job of managing production and supply of genetic inputs as well as Liquid Nitrogen to a specialized autonomous and professional State Implementing Agency.

Automobile and auto components: Project Opportunities in Bihar

PROFILE:

The Indian auto industry has the potential to emerge as one of the largest in the world. Presently, India is second largest two wheeler markets in the world, fourth largest commercial vehicle market in the world. 11th largest passenger car in the world and is expected to be the seventh largest market by 2016. The growth is a reflection of the emergence of India as a global automobile hub with almost all global auto makers having set up plants in India to cater mainly to the domestic market, as also the export market.

RESOURCES:

There is huge business potential in Automobile industry in the from Tenders, Procurement notices, public tender notices, online tenders, government tenders, domestic tenders, tenders notification, Bids, tenders news, tenders info and contracts available throughout the country.

GOVERNMENT POLICIES:

A number of policy initiatives have been taken by the government to facilitate the automotive industry. These include:

•        Permitting 100% FDI in this sector & removal of minimum capital investment norm for fresh entrants.

•        Establishing an international hub for manufacturing small, affordable passenger cars & a centre for manufacturing two-wheelers.

•        Conducting incessant modernization of the industry & facilitate indigenous design, research & development.

•        Leveraging State’s software technology into automotive technology wherever relevant.

Brewery: Project Opportunities in Bihar

PROFILE:

A brewery is a dedicated building for the making of beer, though beer can be made at home, and has been for much of beer's history. A company that makes beer is called either a brewery or a brewing company. The diversity of size in breweries is matched by the diversity of processes, degrees of automation, and kinds of beer produced in breweries. A brewery is typically divided into distinct sections, with each section reserved for one part of the brewing process. The Indian beer industry has been witnessing steady growth of 10 - 17% per year over the last ten years. The rate of growth has increased in recent years, with volumes passing 170m cases during the 2008-2009 financial year. With the average age of the population on the decrease and income levels on the increase, the popularity of beer in the country continues to rise.

RESOURCES:

Bihar is emerging as a brewery hub with major domestic and foreign firms setting up production units in the state due to availability of cheap labour and raw materials coupled with improved law and order and investment-friendly government policies. Beer consumption in domestic markets in Bihar has increased sharply in the last few years. Beer consumption in the state has risen 10 times in the past seven years. As per industry estimates, annual consumption is 700,000 cases. Nearly 70% of litchis manufactured in India come from Muzaffarpur and also the nearby districts. The firm is mulling to manufacture litchi-flavoured wine by mixing pulpy extracts of the fruit with various types of spirits.

GOVERNMENT POLICIES:

The brewing industry is subject to extensive government regulations at both the federal and state levels, as well as to regulation by a variety of local governments. Some of the regulations imposed at the federal and state level involve production, distribution, labelling, advertising, trade and pricing practices, credit, container characteristics, and alcoholic content. Federal, state and local governmental entities also levy various taxes, license fees and other similar charges and may require bonds to ensure compliance with applicable laws and regulations. Specific alcohol taxation (as opposed to more general sales taxes) is primarily a federal and state right although some states permit some additional local taxation. The brewing industry must also comply with numerous federal, state, and local environmental protection laws.

Waste Management: Project Opportunities in Bihar

PROFILE:

Waste management is the collection, transport, processing or disposal, managing and monitoring of waste materials. The term usually relates to materials produced by human activity, and the process is generally undertaken to reduce their effect on health, the environment or aesthetics. Waste management is a distinct practice from resource recovery which focuses on delaying the rate of consumption of natural resources. The management of wastes treats all materials as a single class, whether solid, liquid, gaseous or radioactive substances, and tried to reduce the harmful environmental impacts of each through different methods.

RESOURCES:

Bihar was the third most populated state of India with total population of 82,998,509. Bihar generates 2600 tonnes urban solid waste per day while Kahalgaon-based thermal power plant produces 36 lakh tonnes fly ash annually. Bihar generates 3800 kg biomedical waste per day. The civic authorities have determined that 14 lakh population of Patna accumulate 700 metric tonne of solid waste every day. The equipment for treatment of bio-medical waste of the city has been installed and commissioned at the Indira Gandhi Institute of Medical Sciences (IGIMS). In effect, Patna will be free from bio-medical waste that is littered along its various roads and lanes.

GOVERNMENT POLICIES:

The Central Government notified the Municipal Solid Wastes (Management & Handling) Rules 2000 under Sections 3, 6 and 25 of the Environment (Protection) Act 1986 for the purpose of managing municipal and urban wastes/garbage in an environmentally sound manner. Government of West Bengal are the nodal agencies for technical guidance and preparation of project report for the development of municipal solid waste management plan for the municipal authorities situated within Kolkata Metropolitan Area (KMA) and Non-KMA areas respectively. National policy on waste management is set out in the October 1998 policy statement on waste management- Changing our Ways. It outlines the Government's policy objectives in relation to waste management, and suggests some key issues and considerations that must be addressed to achieve these objectives. The policy is firmly grounded in an internationally recognised hierarchy of options, namely prevention, minimisation, reuse/recycling, and the environmentally sustainable disposal of waste which cannot be prevented or recovered.

We can provide you detailed project reports on the following topics. Please select the projects of your interests.

Each detailed project reports cover all the aspects of business, from analysing the market, confirming availability of various necessities such as plant & machinery, raw materials to forecasting the financial requirements. The scope of the report includes assessing market potential, negotiating with collaborators, investment decision making, corporate diversification planning etc. in a very planned manner by formulating detailed manufacturing techniques and forecasting financial aspects by estimating the cost of raw material, formulating the cash flow statement, projecting the balance sheet etc.

We also offer self-contained Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects on the following topics.

Many of the engineers, project consultant & industrial consultancy firms in India and worldwide use our project reports as one of the input in doing their analysis.

We can modify the project capacity and project cost as per your requirement.
We can also prepare project report on any subject as per your requirement.

Page 238 of 280 | Total 2796 projects in this category
« Previous   Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 .... 238 279 280   Next »

Add multiple items to inquiry
Select the items and then press Add to inquiry button

Select all | Clear all Sort by

Manufacturing Business of Plastic Optical Lenses

Traditional glass lenses can be replaced by plastic optical lenses. They're constructed of an inert, pliable polymer that allows you to design frames that don't distort your eyesight or disrupt your eye socket's natural shape. Because they're so light, you won't even notice you're wearing them! Optical lenses are light-focusing or diverging optical components that focus or diverge light. Optical lenses are used in a variety of fields, such as life sciences, photography, industry, and defence. The profile or substrate of a lens affects how light flows through it. A lens is a refractory transmissive optical device that alters the focal length of a light beam. A simple lens is made up of a single piece of material, whereas a compound lens is made up of numerous simple lenses (elements) connected by a common axis. Lenses are made of transparent materials that have been ground and polished into the right shape, such as glass. The great majority of lenses are spherical, with two sphere sections on each surface. Convex (bulging outwards from the lens), concave (depressed into the lens), or planar (no bulging outwardly from the lens) surfaces are possible (flat). The lens axis is the line that connects the centres of the spheres that make up the lens surfaces. A magnifying glass is a frame that contains a single convex lens and a handle or stand. Myopia, hyperopia, presbyopia, and astigmatism, among other vision abnormalities, can be treated using lenses. Monoculars, binoculars, telescopes, microscopes, cameras, and projectors are some of the additional applications. When used on the human eye, some of these instruments provide a simulated image; others create a real image that may be captured on photographic film or an optical sensor, or displayed on a screen. The Abbe number refers to a lens's dispersion, which is the property most closely linked to its optical performance of all its properties. Lower Abbe numbers imply chromatic aberration (colour fringes above/below or to the left/right of a high contrast object), which is more common in larger diameter lenses with stronger prescriptions (4D or greater). Lower Abbe numbers are an inherent characteristic of mid and higher index lenses, regardless of the material employed. The Abbe number for a material at a specific refractive index formulation is called the Abbe value. So far, glass lenses have been employed in a wide range of applications. As a result of its brittleness and susceptibility to deterioration, plastic lenses have developed and grown in popularity. Plastic lenses beat glass lenses in terms of UV resistance, durability, and safety for use in sports or other high-intensity activities where the lens is likely to break. Plastic lenses can be coated with a variety of coatings to meet the needs of users. Optical lenses are optical components that concentrate or diverge light. Microscopes, binoculars, camera lenses, and telescopes are examples of optical lenses. Optical lenses are made of many materials, such as glass, polycarbonate, and plastic resins. Because of their multiple advantages and the increasing growth of optics-related industries, resin-based lenses are currently in the limelight. The Internet's widespread use has accelerated the adoption of mobile phones and televisions. As a result, an increasing number of people are experiencing vision issues and needing to utilise plastic lenses. These lenses feature a wide range of practical qualities, such as little distortion, shatter resistance, and strong breaking resistance, which has increased their popularity and demand significantly. Key Players • Appasamy Ocular Devices Pvt. Ltd. • Bausch & Lomb India Pvt. Ltd. • Eagle Optics Pvt. Ltd. • Essilor India Pvt. Ltd. • G K B Hi-Tech Lenses Pvt. Ltd.
Plant capacity: 20,000 Pairs per dayPlant & machinery: 10.27 Cr
Working capital: N/AT.C.I: Cost of Project: 14.73 Cr
Return: 25.00%Break even: 44.00%
Add to Inquiry Add to Inquiry Basket

Manufacturing Business of Plastic Optical Lenses

Traditional glass lenses can be replaced by plastic optical lenses. They're constructed of an inert, pliable polymer that allows you to design frames that don't distort your eyesight or disrupt your eye socket's natural shape. Because they're so light, you won't even notice you're wearing them! Optical lenses are light-focusing or diverging optical components that focus or diverge light. Optical lenses are used in a variety of fields, such as life sciences, photography, industry, and defence. The profile or substrate of a lens affects how light flows through it. A lens is a refractory transmissive optical device that alters the focal length of a light beam. A simple lens is made up of a single piece of material, whereas a compound lens is made up of numerous simple lenses (elements) connected by a common axis. Lenses are made of transparent materials that have been ground and polished into the right shape, such as glass. The great majority of lenses are spherical, with two sphere sections on each surface. Convex (bulging outwards from the lens), concave (depressed into the lens), or planar (no bulging outwardly from the lens) surfaces are possible (flat). The lens axis is the line that connects the centres of the spheres that make up the lens surfaces. A magnifying glass is a frame that contains a single convex lens and a handle or stand. Myopia, hyperopia, presbyopia, and astigmatism, among other vision abnormalities, can be treated using lenses. Monoculars, binoculars, telescopes, microscopes, cameras, and projectors are some of the additional applications. When used on the human eye, some of these instruments provide a simulated image; others create a real image that may be captured on photographic film or an optical sensor, or displayed on a screen. The Abbe number refers to a lens's dispersion, which is the property most closely linked to its optical performance of all its properties. Lower Abbe numbers imply chromatic aberration (colour fringes above/below or to the left/right of a high contrast object), which is more common in larger diameter lenses with stronger prescriptions (4D or greater). Lower Abbe numbers are an inherent characteristic of mid and higher index lenses, regardless of the material employed. The Abbe number for a material at a specific refractive index formulation is called the Abbe value. So far, glass lenses have been employed in a wide range of applications. As a result of its brittleness and susceptibility to deterioration, plastic lenses have developed and grown in popularity. Plastic lenses beat glass lenses in terms of UV resistance, durability, and safety for use in sports or other high-intensity activities where the lens is likely to break. Plastic lenses can be coated with a variety of coatings to meet the needs of users. Optical lenses are optical components that concentrate or diverge light. Microscopes, binoculars, camera lenses, and telescopes are examples of optical lenses. Optical lenses are made of many materials, such as glass, polycarbonate, and plastic resins. Because of their multiple advantages and the increasing growth of optics-related industries, resin-based lenses are currently in the limelight. The Internet's widespread use has accelerated the adoption of mobile phones and televisions. As a result, an increasing number of people are experiencing vision issues and needing to utilise plastic lenses. These lenses feature a wide range of practical qualities, such as little distortion, shatter resistance, and strong breaking resistance, which has increased their popularity and demand significantly. Key Players • Appasamy Ocular Devices Pvt. Ltd. • Bausch & Lomb India Pvt. Ltd. • Eagle Optics Pvt. Ltd. • Essilor India Pvt. Ltd. • G K B Hi-Tech Lenses Pvt. Ltd.
Plant capacity: 20,000 Pairs per dayPlant & machinery: 10.27 Cr
Working capital: N/AT.C.I: Cost of Project: 14.73 Cr
Return: 25.00%Break even: 44.00%
Add to Inquiry Add to Inquiry Basket

Recycling of Lithium Ion Battery Business

The popularity of smart phones and tablets has resulted in a significant increase in the demand for lithium ion batteries in recent years. Because these gadgets contain hazardous elements that must be properly disposed of to avoid contamination of the environment, it is now more important than ever to recycle these batteries. Most commercial lithium ion batteries contain transition metal oxides or phosphates, aluminium, copper, graphite, organic electrolytes containing poisonous lithium salts, and other chemicals. As a result, an increasing number of scientists are concentrating their efforts on the recycling and repurposing of spent lithium ion batteries. However, recycling expended lithium ion batteries is difficult due to their high energy density, greater safety, and low cost. Lithium-ion batteries are becoming increasingly popular. Cell phones, computers, consumer gadgets, and certain industrial applications already use them. They're used in telecom towers, solar storage systems, and electric automobiles. Lithium-ion batteries should be recycled for a variety of reasons, according to battery experts and environmentalists. The recovered materials might be utilised to build new batteries, cutting production costs. These components now account for more than half of the cost of a battery. The most expensive components of the cathode, cobalt and nickel, have seen significant price changes in recent years. The removal of any plastic, rubber, or metal pieces is the first stage in recycling a lithium ion battery. These parts are sold as raw materials after being separated from the remainder of the waste stream. The next stage is to separate all metals, which is usually done by electrolysis, which produces an acid solution that dissolves metals while leaving the bulk of other components behind. Batteries can be dismantled into groups of similar materials and reused without any additional processing. Cobalt and nickel, for example, could be employed in new batteries or as semiconductor components. Steel is created from manganese and iron, and aluminium is delivered to aluminium smelters. Despite the fact that chromium is infrequently recovered for use in steel manufacturing, it is most commonly used as a high-purity alloying agent. Lithium waste does not react with other chemicals, thus it can be disposed of properly in landfills or resold to manufacturers who will reuse it after separation. India's lithium-ion battery sector is expected to grow quickly over the next five years. One of the primary steps taken by the Indian government to drive the growth of this sector is the National Electric Mobility Mission Plan 2020, which forecasts 6-7 million electric vehicles on Indian roads by 2020 and a target of 175 GW renewable energy installation by 2022. India's annual lithium-ion battery market is expected to increase at a 37.5 percent compound annual growth rate (CAGR) from now until 2030, when it would reach 132 GWh, according to projections. By 2030, the market for lithium-ion batteries will have grown from 2.9 gigawatt-hours in 2018 to around 800 gigawatt-hours. India's goal to transition from fossil fuel-based vehicles to electric vehicles (EVs) would drive up demand for batteries in the coming years. The lithium-ion battery (LiB) is now the most suitable alternative among the various existing battery technologies. With today's recycling technology, valuable metals including cobalt, nickel, manganese, lithium, graphite, and aluminium can be recovered up to 90%. These make up around 50-60% of the total battery cost, with cobalt being the most expensive.
Plant capacity: Copper: 1.4 MT Per Day | Aluminium: 0.8 MT Per Day | Graphite: 1.8 MT Per Day | Carbon Black: 0.3 MT Per Day | Lithium Cobalt Oxide: 2.5 MT Per Day | Plastic: 0.2 MT Per DayPlant & machinery: 200 Lakhs
Working capital: N/AT.C.I: Cost of Project: 422 Lakhs
Return: 27.00%Break even: 55.00%
Add to Inquiry Add to Inquiry Basket

Start Bamboo Fiber & Yarn Manufacturing Business

Bamboo is a member of the Gramineae family, which includes over 90 genera and 1200 species. Bamboo is indigenous to the tropical and subtropical regions between 46° north and 47° south latitude in Africa, Asia, Central America, and South America. Several species from Europe and North America may also be able to thrive in moderately temperate climates. Bamboo is a plant that can grow in a variety of climates and soil types. Bamboo is a type of agroforestry crop that can be grown on terrain that isn't ideal for farming or forestry. Because the culms are hollow, they are light and may be collected and moved without the necessity of special equipment or trucks, unlike wood. It quickly separates for weaving, making it easy to handle for men and women alike. Bamboo is commonly planted on farms outside of the forest, where it is easier to handle. Processing typically does not necessitate highly specialised labour or unique expertise, and it can be started at a low cost by rural poor people. Bamboo's popularity and trade have grown in recent years. Bathrobes • Towels • Bedclothes • T-shirts • Socks • Sweaters • Summer Clothing • Mats • Curtains are all made of bamboo fibre yarn. Certain varieties can reach a height of one metre every day. Bamboo grass can be as small as one foot (30 cm) tall or as large as 100 feet tall bamboo wood plants (30 meters). Bamboo plants grow on every continent and are economically and culturally significant. Bamboo fibre and yarn are created from bamboo plants, which are grasses that thrive in tropical climates around the world. Bamboo fibre and yarn are gaining popularity because of their environmental friendliness, durability, softness, and washability, as well as their antibacterial characteristics. Bamboo fibre and yarn, on the other hand, must be processed extensively before being utilised. Bamboo fibre and yarn are created from bamboo plants, which are grasses that thrive in tropical climates around the world. Bamboo fibre and yarn are gaining popularity because of their environmental friendliness, durability, softness, and washability, as well as their antibacterial characteristics. Bamboo fibre is made from the stalks of bamboo plants, which can be found in tropical and subtropical areas all over the world. Textiles made from these stalks have been woven in Asia for thousands of years, dating back to the Han Dynasty (200 BC-AD 200), but the rest of the world has only recently discovered their beauty. Bamboo fibre is used in a variety of applications, including bathroom textiles, medicinal and hygienic clothes, bamboo fashion, and home furnishings. They are antifungal and antibacterial, have a flat surface, and are as thin as hairs. Despite growing concerns regarding its manufacturing volume, bamboo fibre demand is increasing as a result of a growing focus on environmentally friendly textile production. Increasing public awareness about environmental sustainability and conservation, as well as rising demand for natural fabrics, are expected to boost market demand throughout the forecast period. In the medium term, the usage of breakthrough eco-fiber production technologies such as enzyme technology, foam technology, and plasma technology is likely to bring up new prospects. The global Bamboo Fibers market was worth million US dollars in 2018 and is predicted to grow at a CAGR of between 2019 and 2025 to reach million US dollars by the end of 2025. Key Players • Amarjothi Spinning Mills Ltd. • Cheran Spinner Pvt. Ltd. • Gillanders Arbuthnot & Co. Ltd. • H P Cotton Textile Mills Ltd. • Lakshmi Mills Co. Ltd. • Wearit Global Ltd.
Plant capacity: 6,666 Kgs Per Day Plant & machinery: 273 Lakhs
Working capital: N/AT.C.I: Cost of Project: 725 Lakhs
Return: 26.00%Break even: 57.00%
Add to Inquiry Add to Inquiry Basket

Start Printed Circuit Board (PCBs) Production Business

PCBs are used extensively in modern electronic products such as computers, telephones, televisions, and even smaller electronic devices such as smart watches and fitness trackers. Printed wiring boards (PWBs) are critical components that include a foundation board that supports all other parts and circuitry, as well as a patterned layer of electrical tracks printed on top. The four major components of a printed circuit board (PCB) are: • Substrate (optional): The substrate, which is usually constructed of fibreglass, is the first and most crucial phase. Fiberglass is employed in the PCB's core because it strengthens it and helps it withstand fracture. Consider the substrate to be the "skeleton" of the PCB. • Copper Layer: This layer can be copper foil or a full-on copper covering, depending on the board type. Regardless of which method is utilised, the copper's function is the same: it transmits electrical signals from the PCB to the brain and muscles, just like your nervous system. • Solder Mask: The solder mask, a polymer layer that protects the copper from short-circuiting when it comes into contact with the environment, is the third component of the PCB. The solder mask serves as the PCB's "skin" in this situation. • Silkscreen: The silkscreen is the final component on the circuit board. Part numbers, logos, symbols, switch settings, component reference, and test locations are commonly silkscreened on the component side of the board. The silkscreen is also referred to as Television sets, transistor sets, radios, amplifiers, ampligrams, stereo amplifiers, voltage stabilisers, calculators, communications equipment, power supply, public address equipment, computers, and defence and other research organisations all employ printed circuit boards. On today's PCBs, component connection leads are commonly in the shape of a little foot. As a result, they can be immediately soldered to the copper tracks and placed on the same side. This not only saves money by avoiding costly drilling and track hookups through the board, but it also allows for the use of surface mounting devices (SMDS), which are often smaller and potentially less expensive than their traditional counterparts and allow for significantly higher component packing density. Capacitors and resistors are the most common components found in SMD form. These are little rectangular blocks with metal caps on the ends that connect all of the interior electrodes. There are no cables connecting the components. PCBs can be found in practically every electronic product, from consumer electronics like PCs, tablets, cellphones, and gaming consoles to industrial and even high-tech items in the strategic and medical electronics industries. Given the importance of the PCB business in the electronics manufacturing ecosystem, an article titled 'How will the Indian PCB industry grow?' was published in the April 2016 issue of Electronics Bazaar, and included the perspectives of key industry stakeholders. The Indian market is unique in compared to the rest of the world. Because flexible circuits may reduce form factor and eliminate connectors, they are predicted to grow far faster in the worldwide market than rigid PCBs. Most Indian PCB producers, on the other hand, concentrate on single-sided, double-sided, and multi-layered PCBs with four to eight layers. The Indian electronics industry is one of the world's fastest expanding, with domestic manufacturing exceeding $100 billion and expected to reach $400 billion by 2022. As a result, the PCB industry will see significant growth. According to an ELCINA analysis, PCB consumption in the residential market is predicted to expand at a CAGR of 20.56 percent from 2015 to 2020, reaching over US$ 6 billion by 2020, up from US$ 2.38 billion currently. Key Players: • Akasaka Electronics Ltd. (2002) • Akasaka Electronics Ltd. • Amara Raja Electronics Ltd. • Ample Circuit Pvt. Ltd. • At & S India Pvt. Ltd. • B I T Mapper Integration Technologies Pvt. Ltd. • B L G Electronics Ltd.
Plant capacity: Multilayer High Density Interconnect PCBs: 40 SqMtrs. Per Day Multilayer Flex PCBs: 40 SqMtrs. Per Day | Multilayer High Power PCBs: 40 SqMtrs. Per DayPlant & machinery: 260 Lakhs
Working capital: N/AT.C.I: Cost of Project: 594 Lakhs
Return: 27.00%Break even: 58.00%
Add to Inquiry Add to Inquiry Basket

Start Manufacturing Business of AAC Blocks from Silica Sand & Lime Stone Powder

The novel building material autoclaved aerated concrete (AAC) is employed in construction. It is both environmentally friendly and provides good insulation. Autoclaved aerated concrete (AAC), also known as autoclaved cellular concrete (ACC) or simply autoclaved concrete, is a high-strength material manufactured by injecting steam into wet, raw concrete mixes. The shape and size of the air-filled cells created by the aeration process may vary depending on how the concrete mix is prepared and placed in moulds prior to steam injection. Because of its adaptability, AAC can be used for floor slabs, wall panels, acoustic dividers, ceiling tiles, patio covers, and even furniture. Aerated concrete (AAC) is a complete building system consisting of panels and blocks that can be used in residential, commercial, and industrial structures. AAC is a green building material that is fire-resistant, thermally efficient, solid-structured, and simple to work with. AAC has a long history in the construction industry and has established itself as a significant participant. For about 40 years, our country has been creating aerated methods, and their technological abilities and equipment are continually improving. Autoclaved Aerated Concrete Blocks have a high strength-to-weight ratio, low thermal conductivity, temperature and humidity stability, and fire resistance. It can be used in larger construction units due to its low density, which is a considerable benefit in prefabrication. In multi-story structures, significant foundation load savings are realised. As a result, in some industrialised countries, it's becoming more popular as a walling unit. Residential, multistory buildings, commercial, and industrial developments can all benefit from AAC. Natural elements such as sand, lime, and water are used to create the items. These raw components are combined to create a substance with a significant number of air pores, which is known as aerated concrete. The stiff structure of calcium silicate hydrate and the fine holes (almost 70% of the product) give AAC its excellent material characteristics. "The construction industry's autoclaved aerated concrete sector is now through a substantial expansion cycle. Because customers are looking for lower pricing, the autoclaved aerated concrete industry must compete. Although AAC is not a new construction method, it is being employed in India for the first time. Autoclaved aerated concrete ("AAC") is one of many "green" or "environmentally friendly" building materials available today, however it is still relatively obscure in India. AAC is a type of lightweight prefabricated stone. Natural aerated concrete (AAC) is a type of aerated concrete that is utilised in a variety of commercial, industrial, and residential applications. By using less material and producing less waste and pollution, AAC saves time and money. Last year, the Indian government approved 100 percent foreign direct investment in integrated township development. After China, India is currently the second most popular FDI destination. This industry will benefit from a big and expanding middle class population of more than 300 million people, a changing lifestyle, lower living costs, and so on. As a result of industrialization, urbanisation, economic development, and people's rising expectations for improved quality of life, the Indian construction industry, which is an integral part of the economy and a conduit for a significant portion of the country's development investment, is poised for growth in the coming years. The volume of cement and AAC commodities provided to the broader Indian market in a given period is referred to as the market size of cement and AAC. As a result, supply rather than demand determines market size. Between 2020 and 2025, the global autoclaved aerated concrete (AAC) market is expected to increase at a CAGR of 6.0 percent, from USD 18.8 billion in 2020 to USD 25.2 billion in 2025. The market is being driven by increasing urbanisation and industrialization, infrastructural growth, higher demand for lightweight construction materials, expanding preferences for low-cost housing, and a growing focus on green and soundproof buildings. Because of increased demand for AAC blocks in both residential and non-residential enterprises, the blocks element is the largest and fastest-growing category. In addition to their insulating properties, AAC blocks have the advantage of being quick and easy to install, as the material can be routed, sanded, and cut to size on site. In terms of volume, non-residential is predicted to be the fastest-growing end-use industry in the AAC market in the next years. Aesthetics and functionality are the two most important factors to consider when designing a company organisation. AAC is the second most often used building material in the earth, after concrete. AAC is frequently produced in the form of blocks or panels. AAC blocks, unlike concrete masonry units, are solid and do not have moulded core holes. Key Players • Ashoka Pre-Con Pvt. Ltd. • Baliapatam Tiles & Business Ventures Ltd. • Biltech Building Elements Ltd. • Gannon Dunkerley & Co. Ltd. • H I L Ltd. • J K Lakshmi Cement Ltd. • Keltech Energies Ltd.
Plant capacity: 300 Cu.Mtres Per DayPlant & machinery: 600 Lakhs
Working capital: N/AT.C.I: Cost of Project: 1070 Lakhs
Return: 25.00%Break even: 51.00%
Add to Inquiry Add to Inquiry Basket

Production Business of Glass Vials for Medicine (for Cosmetic & Other Injectable)

Glass vials are commonly used to package liquid medicines, elixirs, and other commodities that must be delivered in small quantities. Glass vial packaging is more convenient to use than plastic bottles or cardboard boxes, and it offers additional advantages such as safety, mobility, and other advantages. Vials are small glass containers that can be used to hold chemicals and food in addition to chilled medicine. To be effective, liquids, dry powders, and lyophilized substances in vials must be reconstituted before use. Because vials are the most frequent type of packaging for injectable medicines and vaccines, they are exposed to a wide variety of temperatures throughout their lives. Despite the availability of plastic vials, glass vials are extensively used in medicine to package liquids such as vaccinations and other medications. They're often packaged in brown bottles with screw-on caps, though some people prefer plastic vials to glass bottles because glass bottles can be harmful if dropped or damaged. Plastic or glass vials are commonly used in modern containers. They're commonly employed in medical and molecular biology applications to hold small amounts of liquid. Closure systems come in a variety of shapes and sizes, and they're all used on a regular basis. Screw vials (closed with a screw cap or dropper/pipette), lip vials (closed with a cork or plastic stopper), and crimp vials (closed with a cork or plastic stopper) are all examples of glass vials (closed with a rubber stopper and a metal cap). With plastic vials, other closure methods, such as 'hinge caps,' which snap shut when pressure is applied, can be used. Other names for them are flip-tops and snap caps. Vials are most commonly used in the medical field. They're utilised to organise diagnoses and specimens. Swabs are kept in tubes, which are similar to vials. In the criminal court system, forensic labs frequently use vials. The entomology division of the forensics division investigates insects and violent crimes. Killing jars are small jars used to collect and kill insects with minimal injury. In certain facilities, insects are raised from eggs kept in clear vials, allowing for more accurate monitoring of the growth process. Vials are also used by criminal investigators to try to keep crime scenes clean. Glass is still the ideal material for storing sensitive medications and injectables, and it's also used extensively in general laboratory applications. Glass shields medicines and formulations from light and moisture while allowing them to last a long time on the shelf. Glass transports some of the world's most precious liquids, from scorpion venom to insulin. Benefits of Glass Vial: The smooth, transparent surface of a glass vial allows you to visually evaluate the contents for contamination or degradation. One of the reasons why glass is the most commonly utilised container material for injectable liquids is because of this. Borosilicate glass is chemically inert, with the exception of a few acids, and will not react with other chemicals. As a result, you won't have to worry about your samples being damaged by borosilicate glass, and you can count on a lengthy shelf life. Due to its low coefficient of thermal expansion, borosilicate glass is less susceptible to thermal shock than other materials. Borosilicate glass is good for chromatography because of its characteristics. The India Glass Packaging Market is estimated to develop at a CAGR of 6.94 percent over the forecast period. Packaging manufacturing and production, as well as related enterprises, are only active in a few countries where packaging makes a significant contribution to GDP. The focus has shifted away from the country's glass packagers and toward the pharmaceutical industry. Vitamins, pharmaceuticals, and other goods stored in glass vials will not lose their aroma or taste since glass is nonporous. It decreases the possibility of evaporation or contamination from items trapped in the pores of a container. Glass is made from a variety of basic resources, including sand, and is reusable and sustainable. You can feel good about using glass vials because you're helping to save the environment. The Global Vials Market was valued at USD 3,200.2 million in 2021, and it is expected to increase at a CAGR of 6.8% over the next five years. North America is the largest market for vials. The Global Vials Market was valued at USD 3,200.2 million in 2021, and it is expected to increase at a CAGR of 6.8% over the next five years. Vials have been the standard packaging for drugs for many years and are expected to continue to be so in the future. India's pharmaceutical and biotechnology industries employ the world's second-largest workforce. The pharmaceutical business is predicted to grow in size during the next decade, according to the Indian Economic Survey 2021. The pharmaceutical market in the country is expected to grow from USD 41 billion in 2021 to USD 65 billion in 2024, and then to USD 120-130 billion by 2030. Key Players: • Elder Projects Ltd. • Haldyn Glass Ltd. • Hindusthan National Glass & Inds. Ltd. • Makcur Laboratories Ltd. • Nipro Tube Glass Pvt. Ltd. • S G D Pharma India Pvt. Ltd. • Schott Kaisha Pvt. Ltd.
Plant capacity: 2,00,000 Pcs Per DayPlant & machinery: 24 Cr
Working capital: N/AT.C.I: Cost of Project: 34 Cr
Return: 23.00%Break even: 53.00%
Add to Inquiry Add to Inquiry Basket

Start Production Business of Micronutrient Fortified Energy Dense Food

Energy Dense Food with Micronutrient Fortification ensures that you obtain all of the critical micronutrients you need to stay healthy and eat well. Micronutrient Fortified Energy Dense Food adds vitamins A, C, B12, zinc, and iron to food and meals to give consumers the most nutritional options at every meal of the day. Deficits in one or more micronutrients, such as iron, zinc, and vitamin A, are common in low- and middle-income nations, putting millions of people's physical and mental health at danger. Fortification of foods is a low-cost method that has been shown to benefit health, the economy, and society. Food fortification has grown in popularity in LMICs over the last two decades for a variety of reasons, including increased urbanisation and rising household spending power, which has led to a greater reliance on processed foods by a larger proportion of the population. Iron insufficiency kills 0.8 million people per year (1.5 percent of all deaths), whereas vitamin A deficiency kills a similar number of people, resulting in a large number of lives lost. According to a large body of research, LSFF appears to have public health implications in both HICs and LMICs. According to a recent review of 50 trials in LMICs, iodine, folic acid, vitamin A, and iron fortification resulted in significant decreases in serious disease. Several country-level studies on the effect of food fortification on micronutrient status have yielded encouraging results. The market for micronutrient fortified foods is expected to grow at a CAGR of 6.1 percent from 2021 to 2026, reaching $172.4 million in 2020. Foods that have been supplemented with nutrients that aren't naturally present in them are known as fortified foods. These foods are designed to provide nutrition as well as health benefits. Calcium could be added to fruit juice extracts because vitamin D is commonly supplemented in milk. As a result of fortified food consumption, common nutrient-deficiency ailments such as rickets and pellagra have practically vanished, and this driver is propelling the fortified foods market forward over the projected period of 2021-2026. While mandatory food fortification has been used in high-income countries (HIC) to prevent micronutrient deficiencies since the 1920s in Europe and North America—when the first salt was iodized—it is still uncommon in LMICs, where food systems are failing to deliver nutritionally adequate diets due to the production and consumption of only a few major starchy food crops (maize, rice, wheat) with low micronutrient content and/or bioavailability.
Plant capacity: 1600 Kgs Per DayPlant & machinery: 23 Lakhs
Working capital: N/AT.C.I: Cost of Project: 56 Lakhs
Return: 28.00%Break even: 65.00%
Add to Inquiry Add to Inquiry Basket

Ethanol from Broken Rice Production

Ethanol is a colourless, transparent liquid with a distinctive and pleasant odour. It has a moderately pleasant flavour in dilute aqueous solutions, but a scorching flavour in more concentrated solutions. Ethanol (CH3CH2OH) is a chemical substance with a hydroxyl group (-OH) attached to a carbon atom in each of its molecules. Ethanol is a colourless, combustible, and mildly poisonous chemical molecule found in alcoholic beverages. It is also known as ethyl alcohol, drinking alcohol, or grain alcohol. It is commonly referred to as "alcohol" in everyday discourse. EtOH, CH3CH2OH, and C2H5OH, as well as the empirical formula C2H6O, are some of its chemical formulae (which it shares with diethyl ether). Carbohydrates have been fermented to produce ethanol since prehistoric times. This approach continues to produce all ethanol for human use as well as more than half of the ethanol used in industry. The raw ingredient is simple sugars. The yeast enzyme zymase converts simple carbohydrates to ethanol and carbon dioxide. Ethanol can be used as a standalone vehicle fuel or combined with gasoline to form "gasohol." The most common ethanol-to-gasoline blends have 10% and 85% ethanol, respectively. In the United States, about 1 billion gallons of ethanol are combined with gasoline each year. A 10% ethanol mixture will run OK in the majority of spark-ignited gasoline engines. The majority of spark-ignited gasoline engines will run fine with a 10% ethanol mixture. Most spark-ignited gasoline style engines will run well with mixtures of 10% ethanol. Anhydrous ethanol (ethanol with less than 1% water) can be blended with gasoline in varying amounts up to pure ethanol (E100), and most spark-ignited gasoline style engines will run well with mixtures of 10% ethanol (E10). The majority of cars on the road in the United States now can operate on ethanol mixes of up to 10%, and 10% ethanol fuel is required in some cities where harmful levels of auto emissions are feasible. The most common application of ethanol is in the manufacture of gasoline. The amount of greenhouse gases released during combustion is lowered when a fraction of bioethanol is added to conventional gasoline. In Europe, bioethanol blends with 5 to 10% bioethanol by volume are frequently utilised. E5 or E10 is the designation for the resulting fuel. Far larger combinations, up to and including 100 percent bioethanol vehicle operation, are typical in other parts of the world, such as South America. Flexible fuel vehicles (FFVs) can run on any combination of gasoline, methanol, or ethanol. Ethanol is also utilised in the manufacturing of paints, inks, varnishes, and alkyd resins, as well as as a heat bearer, in aerosols, and in the offshore industries, to name a few. Ethanol is used as a flavour enhancer, in winemaking, and as a foundation for a variety of drinks and confectionery. One of the most often used chemicals in medications is ethanol. Cough syrup, medical capsules, and disinfectants all contain it as a solvent and chemical reactant. Due to increased ethanol usage in sectors such as fuel additives and beverages, the India ethanol market is expected to rise from $ 2.50 billion in 2018 to $ 7.38 billion by 2024, with a CAGR of 14.50 percent from 2019 to 2024. Ethanol is a prevalent alcoholic beverage that can be found in a variety of forms such as beer, cider, wine, spirits, and ale. In an effort to minimise the country's reliance on imported crude oil, the Indian government is pressuring sugar growers to manufacture ethanol for Oil Marketing Companies (OMCs). According to the OECD-FAO Agricultural Outlook 2018-2027, demand for biofuels is shifting to emerging economies, which are rapidly establishing policies to promote the domestic biofuels sector. Furthermore, according to market projections, developing countries will account for 84 percent of worldwide ethanol demand growth. Several countries have mandatory blending legislation that require a certain quantity of ethanol and biodiesel to be used in transportation fuel. In 2019, the global demand for industrial ethanol is expected to reach around 116.9 billion litres. Between 2020 and 2025, demand is expected to grow at a CAGR of 2.5 percent, reaching a volume of around 135.5 billion litres. Chemicals, medications, plastics, and the beverage sector, which includes cosmetics, paints, cleaning products, and alcoholic beverages, account for approximately 13-15 percent of overall ethanol consumption. Key Players: • Ammana Bio Pharma Ltd. • Ghaziabad Organics Ltd. • India Glycols Ltd. • Jeypore Sugar Co. Ltd. • Piccadily Sugar & Allied Inds. Ltd. • Shamanur Sugars Ltd.
Plant capacity: Ethanol: 30 Units per day | Cattle feed as by Product: 27 Units per dayPlant & machinery: 24 Cr
Working capital: N/AT.C.I: Cost of Project: 39 Cr
Return: 26.00%Break even: 41.00%
Add to Inquiry Add to Inquiry Basket

Business Plan for Abrasive Grinding Wheels Business

Metalworking and machining industries employ abrasive grinding wheels to grind, shape, and polish metal products. These metalworking tools are available in a variety of shapes, sizes, and materials, each of which influences their function and performance. The cylindrical abrasive grinding wheel is the most popular form of grinding wheel (CAGW). The grinding medium for these wheels is the abrasive substance that spins between two metal hubs that keep the wheel together and allow for solid installation on the machine spindle or chuck. Natural or synthetic abrasive materials are linked together in a matrix to form grinding wheels. While some home workshop owners may be familiar with these tools, the great majority were invented and used by industry. Grinding wheels have been an integral part of this business for over 150 years. Grinding wheels are a cost-effective solution for manufacturers to shape and finish metals and other materials. Abrasives are often the only means to produce items with precise dimensions and smooth surfaces. Grinding wheels are used to cut steel and masonry blocks, sharpen knives, drill bits, and a variety of other equipment, and clean and prepare surfaces for painting or plating in practically every industrial organisation in the world today. Grinding wheels, in particular, are used to ensure that the precision of automotive camshafts and jet engine rotors is maintained. The three types of abrasive product manufacturing include abrasive grain production, bonded abrasive product production, and coated abrasive product production. Other abrasive producers use ingredients developed by abrasive grain producers to make abrasive products. When choosing grinding wheels, there are a number of critical factors to consider. Grain size, material, wheel grades, grain spacing, and bond type are five of these factors. The colour codes on the wheel's label represent all of these characteristics. Grinding wheels come in a variety of shapes and sizes, each with its own set of characteristics. Sharpening, polishing, cutting, and smoothing metal are just a few of the applications. The abrasive used, the size created, and the ultimate result all influence them. The following are some examples: The most basic grinding wheels can be found in practically each workplace on the planet. They're used in a variety of tools, including chisels. It is capable of grinding a wide variety of materials. Straight grinding wheels are similar to large-diameter grinding wheels, although they are significantly larger. The outside of circular products, such as carbide blanks, is ground with these wide-surfaced wheels. It's also used in the oil and thermal spray industries for OD grinding. Grinding wheels with a diameter of up to 36 inches are available. The cylinder, often known as the wheel ring, is used to create flat surfaces. The end face of the wheel is used for grinding. Grinding Cup Wheel: Polishing stone or concrete is one of the most common applications for Grinding Cup Wheels. Dish grinding wheels resemble cup grinding wheels, except they are shallower and have a thinner surface edge. The market is likely to be driven by rising demand for grinding and polishing applications in end-use sectors such as automotive, metal fabrication, electronics, and electrical (E&E) equipment and machinery. The product is useful for changing operational parameters in the manufacturing of automobile components, such as noise levels and high-performance engine carbon dioxide emissions, as well as component machining. The India Abrasive Market was valued at USD362.26 million in 2021, with a predicted CAGR of 6.61 percent over the next five years. Initiatives like the "Smart Cities Mission" and "Housing for all," as well as rising demand for electrical gadgets and automobiles, are propelling India's abrasive industry forward. Key Players • Carborundum Universal Ltd. • Sak Abrasive Ltd. • Sak Industries Pvt. Ltd. • Sterling Abrasives Ltd. • Wendt (India) Ltd.
Plant capacity: Resin Bonded Grinding Wheel Size (180x6): 500 Pcs Per Day | Resin Bonded Grinding Wheel Size (230x3): 740 Pcs Per Day | Vitrified Grinding Wheel Size (180x30): 235 Pcs Per Day | Vitrified Grinding Wheel Size (230x20)253 Pcs Per DayPlant & machinery: 150 Lakhs
Working capital: N/AT.C.I: Cost of Project: 343 Lakhs
Return: 28.00%Break even: 56.00%
Add to Inquiry Add to Inquiry Basket

Information
  • One Lac / Lakh / Lakhs is equivalent to one hundred thousand (100,000)
  • One Crore is equivalent to ten million (10,000,000)
  • T.C.I is Total Capital Investment
  • We can modify the project capacity and project cost as per your requirement.
  • We can also prepare project report on any subject as per your requirement.
  • Caution: The project's cost, capacity and return are subject to change without any notice. Future projects may have different values of project cost, capacity or return.

Add multiple items to inquiry
Select the items and then press Add to inquiry button

Page 238 of 280 | Total 2796 projects in this category
« Previous   Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 .... 238 279 280   Next »

About NIIR PROJECT CONSULTANCY SERVICES

Hide »

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

Our various services are: Detailed Project Report, Business Plan for Manufacturing Plant, Start-up Ideas, Business Ideas for Entrepreneurs, Start up Business Opportunities, entrepreneurship projects, Successful Business Plan, Industry Trends, Market Research, Manufacturing Process, Machinery, Raw Materials, project report, Cost and Revenue, Pre-feasibility study for Profitable Manufacturing Business, Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Business Opportunities, Investment Opportunities for Most Profitable Business in India, Manufacturing Business Ideas, Preparation of Project Profile, Pre-Investment and Pre-Feasibility Study, Market Research Study, Preparation of Techno-Economic Feasibility Report, Identification and Selection of Plant, Process, Equipment, General Guidance, Startup Help, Technical and Commercial Counseling for setting up new industrial project and Most Profitable Small Scale Business.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

^ Top