Google Search

Search

Already a Member ?

Best Business Opportunities in Haryana - Identification and Selection of right Project, Thrust areas for Investment, Industry Startup and Entrepreneurship Projects

Food & Agro Processing: Project Opportunities in Haryana

PROFILE:

Food processing is a large sector that covers activities such as agriculture, horticulture, plantation, animal husbandry’s and fisheries. India is the world's second largest producer of food and has the potential of being the biggest with the food and agricultural sector. The total food production in India is likely to double in the next ten years and there is an opportunity for large investments in food and food processing technologies, skills and equipment, especially in areas of Canning, Dairy and Food Processing, Specialty Processing, Packaging, Frozen Food/Refrigeration and Thermo Processing. Fruits & Vegetables, Fisheries, Milk & Milk Products, Meat & Poultry, Packaged/Convenience Foods, Alcoholic Beverages & Soft Drinks and Grains are important sub-sectors of the food processing industry. India is one of the major food producers of world but accounts for less than 1.5 per cent of international food trade.

 

RESOURCES:

Haryana has made a significant contribution in agricultural production in the country. Agriculture is the mainstay of more than 75 per cent population in Haryana, with contribution of 28.2 per cent in GDP of the State. Rice, wheat, jowar, bajra, maize, barley and pulses are the major crops of the State. Under the diversification of crops, more and more area is being brought under cash crops like sugarcane, cotton, oilseeds, etc. New crops like castor, groundnut, soyabean and horticulture crops (vegetables and fruits) are also being encouraged. Efforts are being made to encourage intensive and extensive farming in the State. Sustainable agriculture is being promoted through the propagation of resource conserving technologies and organic farming.

Besides, Haryana is called the land of milk, with having one of the highest productions of dairy products in the country. Haryana also ranks second in fish productivity in India. Rivers, canals and drains are the main sources for capturing fisheries in Haryana. The State has Asia's biggest agricultural University known as Chaudhry Charan Singh Haryana Agricultural University at Hisar, which has already made a significant contribution in ushering 'Green Revolution'.

 

GOVERNMENT POLICIES:

The salient features of the new agricultural policy are:

•        Over 4 per cent annual growth rate aimed over next two decades.

•        Greater private sector participation through contract farming, Price protection for farmers.

•        National agricultural insurance scheme to be launched.

•        Rational utilisation of country's water resources for optimum use of irrigation potential.

•        High priority to development of animal husbandry, poultry, dairy and aquaculture.

•        Capital inflow and assured markets for crop production.

•        Exemption from payment of capital gains tax on compulsory acquisition of agricultural land.

•        Minimise fluctuations in commodity prices.

•        Continuous monitoring of international prices.

•        Plant varieties to be protected through legislation. Adequate and timely supply of quality inputs to farmers.

•        High priority to rural electrification.

•        Setting up of agro-processing units and creation of off-farm employment in rural areas.

 

Automobile: Project Opportunities in Haryana

PROFILE:

The automotive industry in India is one of the largest in the world and one of the fastest growing globally. India's passenger car and commercial vehicle manufacturing industry is the seventh largest in the world, with an annual production of more than 3.7 million units in 2010. Automotive industry is the key driver of any growing economy. It plays a pivotal role in country's rapid economic and industrial development. It caters to the requirement of equipment for basic industries like steel, non-ferrous metals, fertilisers, refineries, petrochemicals, shipping, textiles, plastics, glass, rubber, capital equipments, logistics, paper, cement, sugar, etc. It facilitates the improvement in various infrastructure facilities like power, rail and road transport. Due to its deep forward and backward linkages with almost every segment of the economy, the industry has a strong and positive multiplier effect and thus propels progress of a nation. The automotive industry comprises of the automobile and the auto component sectors.

RESOURCES:

Automobile manufacturing sector constitutes Haryana’s primary strength, thanks to the presence of Maruti-Suzuki, Hero-Honda, Honda Motors, Escorts which have led to the development of a large number of ancillaries in this Sector. Gurgaon-Manesar-Bawal region has  been  identified  as  an  Auto  Hub  by  the  Government  of  India.  A number of auto & auto component units have already set up base in this hub. Maruti-Suzuki has already rolled-out its one-millionth car in a year. Haryana is all set to draw huge investments in the auto sector. In the last 45 days, the Haryana government has attracted investments close to Rs 1,000 crore in the sector, giving tough competition to its arch rival Punjab.

GOVERNMENT POLICIES:

Following new initiatives are expected to provide a further boost to this industry:

i) The HSIIDC had earlier allotted 8 acres of land to Automotive Research Association of India (ARAI) in IMT Manesar, for setting up Automotive Testing Laboratory, which is being run by National Automotive Testing, R&D Infrastructure Project (NATRIP). Another site measuring 46 acres has been allotted at concessional rates in IMT Manesar. The foundation stone for this facility has been laid on the 4th of June 2010. The availability of Testing and R&D facility at this centre will facilitate further development of auto & auto components industry in the State; 

ii) It is proposed to create a railway siding facility in IMT Manesar for smooth transportation of the manufactured goods from out of the IMT area for export and across various destinations in the country;

iii) The State would encourage establishment of a Logistics Centre Facility in PPP mode or through the private sector in IMT Manesar for efficient inventory management and dispatches by the industries.

Textiles: Project Opportunities in Haryana

PROFILE:

Textile is a very important part of our life, be it the clothes we wear or the bed and furnishings that we use in our daily life. The history of textile industry is very rich and has impacted the world economy in a big way. It is one of the oldest form of craft and dates back to Neolithic age. Initially twigs, leave and branches were weaved but subsequently other natural fibres were interlaced to form cloth and fabrics.

RESOURCES:

Haryana boasts of a robust handloom tradition, especially in Panipat and an equally vibrant handicraft tradition. Panipat is a major textile town of India famous for its rugs and upholstery fabric. Traditionally women would weave durries (rugs) and khes (thick coverlets) for household use whenever they would be free from agricultural and household work. However, today theses rugs, especially the panja durries (named after a weaving method) are marketed all over the world. Thick fabrics are a speciality of Haryana, as climatic conditions do not allow the use of fine threads in normal looms. The weavers have also developed their skills using thick threads and can weave many beautiful and complicated designs.

GOVERNMENT POLICIES:

The Ministry of Textiles in India has formulated numerous policies and schemes for the development of the textile industry in India. The government of India has been following a policy of promoting and encouraging the handloom sector through a number of programmes. Most of the schematic interventions of the government of India in the ninth and tenth plan period have been through the state agencies and co-operative societies in the handloom industries. Some of the major acts relating to textile industry include: Central Silk Board Act, 1948, The Textiles Committee Act, 1963, The Handlooms Act, 1985, Cotton Control Order, 1986, The Textile Undertakings Act, 1995 Government of India is earnestly trying to provide all the relevant facilities for the textile industry to utilize its full potential and achieve the target. The textile industry is presently experiencing an average annual growth rate of 9-10% and is expected to grow at a rate of 16% in value, which will eventually reach the target of US $ 115 billion by 2012. The clothing and apparel sector are expected to grow at a rate of 21 %t in value terms.

 

Power: Project Opportunities in Haryana

PROFILE:

The power industry plays a vital role in the economic development of any country. Electricity is a key driver of rapid economic growth and industrialization in the country. It is one of the critical infrastructure on which development of several economic sectors depend. India is the world's sixth largest energy consumer accounting for about 3.5% of the world's total annual energy consumption. Availability of reliable and quality power at competitive rates to Indian industry is necessary to make it globally competitive and to enable it to exploit the tremendous potential of employment generation. Over the years, Indian power industry has shown considerable growth. Foreign direct investment (FDI) up to 100 percent has been permitted through automatic route in generation, transmission and distribution segments.

 

RESOURCES:

The power industry plays a vital role in the economic development of any country. Electricity is a key driver of rapid economic growth and industrialization in the country. It is one of the critical infrastructure on which development of several economic sectors depend. India is the world's sixth largest energy consumer accounting for about 3.5% of the world's total annual energy consumption. Availability of reliable and quality power at competitive rates to Indian industry is necessary to make it globally competitive and to enable it to exploit the tremendous potential of employment generation. Over the years, Indian power industry has shown considerable growth. Foreign direct investment (FDI) up to 100 percent has been permitted through automatic route in generation, transmission and distribution segments.

 

GOVERNMENT POLICIES:

The Government of India has modified the Mega Power Policy to smoothen the procedures further.  The modified Mega Power Policy is as follows:

(i) The power projects with the following threshold capacity shall be eligible for the benefit of mega power policy:

(a) A thermal power plant of capacity 1000 MW or more; or

(b) A thermal power plant of capacity of 700 MW or more located in the States of J&K, Sikkim, Arunachal Pradesh, Assam, Meghalaya, Manipur, Mizoram, Nagaland and Tripura or

(c) A hydel power plant of capacity of 500 MW or more

(d) A hydel power plant of a capacity of 350 MW or more, located in the States of J&K, Sikkim, Arunachal Pradesh, Assam, Meghalaya, Manipur, Mizoram, Nagaland and Tripura; 

(e) Government has decided to extend mega policy benefits to brownfield (expansion) projects also. In case of   brownfield (expansion) phase of the existing mega project, size of the expansion unit(s) would not be not less than that provided in the earlier phase of the project granted mega power project certificate. 

 

Tourism: Project Opportunities in Haryana

PROFILE:

Tourism in India is the largest service industry, with a contribution of 6.23% to the national GDP and 8.78% of the total employment in India. The tourism industry in India is substantial and vibrant, and the country is fast becoming a major global destination. India’s travel and tourism industry is one of them most profitable industries in the country, and also credited with contributing a substantial amount of foreign exchange. Indian Tourism offers a potpourri of different cultures, traditions, festivals, and places of interest.

RESOURCES:

The state of Haryana is blessed with the bounty of nature. Tourism in India is the largest service industry, with a contribution of 6.23% to the national GDP and 8.78% of the total employment in India. The tourism industry in India is substantial and vibrant, and the country is fast becoming a major global destination. India’s travel and tourism industry is one of them most profitable industries in the country, and also credited with contributing a substantial amount of foreign exchange. Indian Tourism offers a potpourri of different cultures, traditions, festivals, and places of interest.

The state of Haryana houses several Sikh Gurdwaras that represents the secular tradition of the people of the state. Apart from performing the religious duties, the Gurdwaras also engage in several social activities. Representing the variant cultural tradition of the state, Haryana has many Muslim "Shrines" that attracts. The Muslim Shrines are noted for their architectural styles. Haryana houses several "Churches" that adds to the diversity of the state. The ceilings of the Church are ornamented with beautiful designs and the walls are adorned with paintings which reflect the artistic imagination of the past golden era.

The state boasts of several places of Pilgrims which have a significant religious and historical importance. The historical place of Kurukshetra, Jyotisar, Thaneshwar, Pehowa and Panchkula reminds one of the rich historical past of our country. The state of Haryana boasts of the rich bio- diversity of the regions which is manifested through the vast reserve of the rare and endangered species of birds in the famous wild life sanctuary of the Sultanpur Bird Sanctuary. Haryana also has several "forts" that adds to the historicity of the state. The strategic location of Haryana was guarded by the construction of huge Forts.

GOVERNMENT POLICIES:

In order to develop tourism in India in a systematic manner, position it as a major engine of economic growth and to harness its direct and multiplier effects for employment and poverty eradication in an environmentally sustainable manner, the National Tourism Policy was formulated in the year 2002. Broadly, the Policy attempts to:-

•        Position tourism as a major engine of economic growth;

•        Harness the direct and multiplier effects of tourism for employment generation, economic development and providing impetus to rural tourism;

•        Focus on domestic tourism as a major driver of tourism growth.

•        Position India as a global brand to take advantage of the burgeoning global travel trade and the vast untapped potential of India as a destination;

•        Acknowledges the critical role of private sector with government working as a pro-active facilitator and catalyst;

•        Create and develop integrated tourism circuits based on India’s unique civilization, heritage, and culture in partnership with States, private sector and other agencies; and

•        Ensure that the tourist to India gets physically invigorated, mentally rejuvenated, culturally enriched, spiritually elevated and “feel India from within”.

 

E-Waste Management: Project Opportunities in Haryana

PROFILE:

E-waste is a popular, informal name for electronic products nearing the end of their useful life. E-wastes are considered dangerous, as certain components of some electronic products contain materials that are hazardous, depending on their condition and density. The hazardous content of these materials pose a threat to human health and environment. Discarded computers, televisions, VCRs, stereos, copiers, fax machines, electric lamps, cell phones, audio equipment and batteries if improperly disposed can leach lead and other substances into soil and groundwater. Many of these products can be reused, refurbished, or recycled in an environmentally sound manner so that they are less harmful to the ecosystem. This paper highlights the hazards of e-wastes, the need for its appropriate management and options that can be implemented.

 

RESOURCES:

Gurgaon known for being the home to over two hundred Fortune 500 companies and a hub of BPOs, Gurgaon is also the biggest producer of e-waste. A recent study revealed that Gurgaon generates about 8,000 metric tonnes (MT) of e-waste every year, the highest in the country. The groundwater in Gurgaon is contaminated with lead and heavy metals because of the unregulated disposal of e-waste and other solid and liquid waste, says the study.

Haryana, in fact, is still to implement its e-waste policy even after the Central Pollution Control Board notified it long back. The e-waste was growing at the pace of 20 per cent annually in India. It was going up in Delhi region, that includes Gurgaon, at the phenomenal rate of more than 40 per cent, it said. It is estimated that the Delhi region would produce about six lakh metric tons of e-waste annually and would continue to be the highest e-waste producer with Gurgaon contributing to it in a major way.

With the increasing use of computers in households, purchase of mobile phones and television sets, e-waste in Delhi region, including Gurgaon, is going to go up phenomenally, the study says. The study has revealed that IT companies in Gurgaon dispose off about 40,000 computers every year while the country’s figure is 20 lakh computers annually.

Haryana is still to introduce e-waste policy in the state. Unregulated disposal of e-waste has resulted in groundwater contamination in Gurgaon. Haryana government on e-waste disposal, the BPOs and other IT companies are taking initiatives on their own.

GOVERNMENT POLICIES:

A comprehensive law that provides e-waste regulation and management and proper disposal of hazardous wastes is required. Such a law should empower the agency to control, supervise and regulate the relevant activities of government departments. Under this law, the agency concerned should collect basic information on the materials from manufacturers, processors and importers and to maintain an inventory of these materials. The information should include toxicity and potential harmful effects.

•        Identify potentially harmful substances and require the industry to test them for adverse health and environmental effects.

•        Control risks from manufacture, processing, distribution, use and disposal of electronic wastes.

•        Encourage beneficial reuse of e-waste and encouraging business activities that use waste. Set up programs so as to promote recycling among citizens and businesses.

•        Educate e-waste generators on reuse/recycling options

We can provide you detailed project reports on the following topics. Please select the projects of your interests.

Each detailed project reports cover all the aspects of business, from analysing the market, confirming availability of various necessities such as plant & machinery, raw materials to forecasting the financial requirements. The scope of the report includes assessing market potential, negotiating with collaborators, investment decision making, corporate diversification planning etc. in a very planned manner by formulating detailed manufacturing techniques and forecasting financial aspects by estimating the cost of raw material, formulating the cash flow statement, projecting the balance sheet etc.

We also offer self-contained Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects on the following topics.

Many of the engineers, project consultant & industrial consultancy firms in India and worldwide use our project reports as one of the input in doing their analysis.

We can modify the project capacity and project cost as per your requirement.
We can also prepare project report on any subject as per your requirement.

Page 251 of 293 | Total 2926 projects in this category
« Previous   Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 .... 251 292 293   Next »

Add multiple items to inquiry
Select the items and then press Add to inquiry button

Select all | Clear all Sort by

Manufacturing Business of Plastic Optical Lenses

Traditional glass lenses can be replaced by plastic optical lenses. They're constructed of an inert, pliable polymer that allows you to design frames that don't distort your eyesight or disrupt your eye socket's natural shape. Because they're so light, you won't even notice you're wearing them! Optical lenses are light-focusing or diverging optical components that focus or diverge light. Optical lenses are used in a variety of fields, such as life sciences, photography, industry, and defence. The profile or substrate of a lens affects how light flows through it. A lens is a refractory transmissive optical device that alters the focal length of a light beam. A simple lens is made up of a single piece of material, whereas a compound lens is made up of numerous simple lenses (elements) connected by a common axis. Lenses are made of transparent materials that have been ground and polished into the right shape, such as glass. The great majority of lenses are spherical, with two sphere sections on each surface. Convex (bulging outwards from the lens), concave (depressed into the lens), or planar (no bulging outwardly from the lens) surfaces are possible (flat). The lens axis is the line that connects the centres of the spheres that make up the lens surfaces. A magnifying glass is a frame that contains a single convex lens and a handle or stand. Myopia, hyperopia, presbyopia, and astigmatism, among other vision abnormalities, can be treated using lenses. Monoculars, binoculars, telescopes, microscopes, cameras, and projectors are some of the additional applications. When used on the human eye, some of these instruments provide a simulated image; others create a real image that may be captured on photographic film or an optical sensor, or displayed on a screen. The Abbe number refers to a lens's dispersion, which is the property most closely linked to its optical performance of all its properties. Lower Abbe numbers imply chromatic aberration (colour fringes above/below or to the left/right of a high contrast object), which is more common in larger diameter lenses with stronger prescriptions (4D or greater). Lower Abbe numbers are an inherent characteristic of mid and higher index lenses, regardless of the material employed. The Abbe number for a material at a specific refractive index formulation is called the Abbe value. So far, glass lenses have been employed in a wide range of applications. As a result of its brittleness and susceptibility to deterioration, plastic lenses have developed and grown in popularity. Plastic lenses beat glass lenses in terms of UV resistance, durability, and safety for use in sports or other high-intensity activities where the lens is likely to break. Plastic lenses can be coated with a variety of coatings to meet the needs of users. Optical lenses are optical components that concentrate or diverge light. Microscopes, binoculars, camera lenses, and telescopes are examples of optical lenses. Optical lenses are made of many materials, such as glass, polycarbonate, and plastic resins. Because of their multiple advantages and the increasing growth of optics-related industries, resin-based lenses are currently in the limelight. The Internet's widespread use has accelerated the adoption of mobile phones and televisions. As a result, an increasing number of people are experiencing vision issues and needing to utilise plastic lenses. These lenses feature a wide range of practical qualities, such as little distortion, shatter resistance, and strong breaking resistance, which has increased their popularity and demand significantly. Key Players • Appasamy Ocular Devices Pvt. Ltd. • Bausch & Lomb India Pvt. Ltd. • Eagle Optics Pvt. Ltd. • Essilor India Pvt. Ltd. • G K B Hi-Tech Lenses Pvt. Ltd.
Plant capacity: 20,000 Pairs per dayPlant & machinery: 10.27 Cr
Working capital: N/AT.C.I: Cost of Project: 14.73 Cr
Return: 25.00%Break even: 44.00%
Add to Inquiry Add to Inquiry Basket

Manufacturing Business of Plastic Optical Lenses

Traditional glass lenses can be replaced by plastic optical lenses. They're constructed of an inert, pliable polymer that allows you to design frames that don't distort your eyesight or disrupt your eye socket's natural shape. Because they're so light, you won't even notice you're wearing them! Optical lenses are light-focusing or diverging optical components that focus or diverge light. Optical lenses are used in a variety of fields, such as life sciences, photography, industry, and defence. The profile or substrate of a lens affects how light flows through it. A lens is a refractory transmissive optical device that alters the focal length of a light beam. A simple lens is made up of a single piece of material, whereas a compound lens is made up of numerous simple lenses (elements) connected by a common axis. Lenses are made of transparent materials that have been ground and polished into the right shape, such as glass. The great majority of lenses are spherical, with two sphere sections on each surface. Convex (bulging outwards from the lens), concave (depressed into the lens), or planar (no bulging outwardly from the lens) surfaces are possible (flat). The lens axis is the line that connects the centres of the spheres that make up the lens surfaces. A magnifying glass is a frame that contains a single convex lens and a handle or stand. Myopia, hyperopia, presbyopia, and astigmatism, among other vision abnormalities, can be treated using lenses. Monoculars, binoculars, telescopes, microscopes, cameras, and projectors are some of the additional applications. When used on the human eye, some of these instruments provide a simulated image; others create a real image that may be captured on photographic film or an optical sensor, or displayed on a screen. The Abbe number refers to a lens's dispersion, which is the property most closely linked to its optical performance of all its properties. Lower Abbe numbers imply chromatic aberration (colour fringes above/below or to the left/right of a high contrast object), which is more common in larger diameter lenses with stronger prescriptions (4D or greater). Lower Abbe numbers are an inherent characteristic of mid and higher index lenses, regardless of the material employed. The Abbe number for a material at a specific refractive index formulation is called the Abbe value. So far, glass lenses have been employed in a wide range of applications. As a result of its brittleness and susceptibility to deterioration, plastic lenses have developed and grown in popularity. Plastic lenses beat glass lenses in terms of UV resistance, durability, and safety for use in sports or other high-intensity activities where the lens is likely to break. Plastic lenses can be coated with a variety of coatings to meet the needs of users. Optical lenses are optical components that concentrate or diverge light. Microscopes, binoculars, camera lenses, and telescopes are examples of optical lenses. Optical lenses are made of many materials, such as glass, polycarbonate, and plastic resins. Because of their multiple advantages and the increasing growth of optics-related industries, resin-based lenses are currently in the limelight. The Internet's widespread use has accelerated the adoption of mobile phones and televisions. As a result, an increasing number of people are experiencing vision issues and needing to utilise plastic lenses. These lenses feature a wide range of practical qualities, such as little distortion, shatter resistance, and strong breaking resistance, which has increased their popularity and demand significantly. Key Players • Appasamy Ocular Devices Pvt. Ltd. • Bausch & Lomb India Pvt. Ltd. • Eagle Optics Pvt. Ltd. • Essilor India Pvt. Ltd. • G K B Hi-Tech Lenses Pvt. Ltd.
Plant capacity: 20,000 Pairs per dayPlant & machinery: 10.27 Cr
Working capital: N/AT.C.I: Cost of Project: 14.73 Cr
Return: 25.00%Break even: 44.00%
Add to Inquiry Add to Inquiry Basket

Recycling of Lithium Ion Battery Business

The popularity of smart phones and tablets has resulted in a significant increase in the demand for lithium ion batteries in recent years. Because these gadgets contain hazardous elements that must be properly disposed of to avoid contamination of the environment, it is now more important than ever to recycle these batteries. Most commercial lithium ion batteries contain transition metal oxides or phosphates, aluminium, copper, graphite, organic electrolytes containing poisonous lithium salts, and other chemicals. As a result, an increasing number of scientists are concentrating their efforts on the recycling and repurposing of spent lithium ion batteries. However, recycling expended lithium ion batteries is difficult due to their high energy density, greater safety, and low cost. Lithium-ion batteries are becoming increasingly popular. Cell phones, computers, consumer gadgets, and certain industrial applications already use them. They're used in telecom towers, solar storage systems, and electric automobiles. Lithium-ion batteries should be recycled for a variety of reasons, according to battery experts and environmentalists. The recovered materials might be utilised to build new batteries, cutting production costs. These components now account for more than half of the cost of a battery. The most expensive components of the cathode, cobalt and nickel, have seen significant price changes in recent years. The removal of any plastic, rubber, or metal pieces is the first stage in recycling a lithium ion battery. These parts are sold as raw materials after being separated from the remainder of the waste stream. The next stage is to separate all metals, which is usually done by electrolysis, which produces an acid solution that dissolves metals while leaving the bulk of other components behind. Batteries can be dismantled into groups of similar materials and reused without any additional processing. Cobalt and nickel, for example, could be employed in new batteries or as semiconductor components. Steel is created from manganese and iron, and aluminium is delivered to aluminium smelters. Despite the fact that chromium is infrequently recovered for use in steel manufacturing, it is most commonly used as a high-purity alloying agent. Lithium waste does not react with other chemicals, thus it can be disposed of properly in landfills or resold to manufacturers who will reuse it after separation. India's lithium-ion battery sector is expected to grow quickly over the next five years. One of the primary steps taken by the Indian government to drive the growth of this sector is the National Electric Mobility Mission Plan 2020, which forecasts 6-7 million electric vehicles on Indian roads by 2020 and a target of 175 GW renewable energy installation by 2022. India's annual lithium-ion battery market is expected to increase at a 37.5 percent compound annual growth rate (CAGR) from now until 2030, when it would reach 132 GWh, according to projections. By 2030, the market for lithium-ion batteries will have grown from 2.9 gigawatt-hours in 2018 to around 800 gigawatt-hours. India's goal to transition from fossil fuel-based vehicles to electric vehicles (EVs) would drive up demand for batteries in the coming years. The lithium-ion battery (LiB) is now the most suitable alternative among the various existing battery technologies. With today's recycling technology, valuable metals including cobalt, nickel, manganese, lithium, graphite, and aluminium can be recovered up to 90%. These make up around 50-60% of the total battery cost, with cobalt being the most expensive.
Plant capacity: Copper: 1.4 MT Per Day | Aluminium: 0.8 MT Per Day | Graphite: 1.8 MT Per Day | Carbon Black: 0.3 MT Per Day | Lithium Cobalt Oxide: 2.5 MT Per Day | Plastic: 0.2 MT Per DayPlant & machinery: 200 Lakhs
Working capital: N/AT.C.I: Cost of Project: 422 Lakhs
Return: 27.00%Break even: 55.00%
Add to Inquiry Add to Inquiry Basket

Start Bamboo Fiber & Yarn Manufacturing Business

Bamboo is a member of the Gramineae family, which includes over 90 genera and 1200 species. Bamboo is indigenous to the tropical and subtropical regions between 46° north and 47° south latitude in Africa, Asia, Central America, and South America. Several species from Europe and North America may also be able to thrive in moderately temperate climates. Bamboo is a plant that can grow in a variety of climates and soil types. Bamboo is a type of agroforestry crop that can be grown on terrain that isn't ideal for farming or forestry. Because the culms are hollow, they are light and may be collected and moved without the necessity of special equipment or trucks, unlike wood. It quickly separates for weaving, making it easy to handle for men and women alike. Bamboo is commonly planted on farms outside of the forest, where it is easier to handle. Processing typically does not necessitate highly specialised labour or unique expertise, and it can be started at a low cost by rural poor people. Bamboo's popularity and trade have grown in recent years. Bathrobes • Towels • Bedclothes • T-shirts • Socks • Sweaters • Summer Clothing • Mats • Curtains are all made of bamboo fibre yarn. Certain varieties can reach a height of one metre every day. Bamboo grass can be as small as one foot (30 cm) tall or as large as 100 feet tall bamboo wood plants (30 meters). Bamboo plants grow on every continent and are economically and culturally significant. Bamboo fibre and yarn are created from bamboo plants, which are grasses that thrive in tropical climates around the world. Bamboo fibre and yarn are gaining popularity because of their environmental friendliness, durability, softness, and washability, as well as their antibacterial characteristics. Bamboo fibre and yarn, on the other hand, must be processed extensively before being utilised. Bamboo fibre and yarn are created from bamboo plants, which are grasses that thrive in tropical climates around the world. Bamboo fibre and yarn are gaining popularity because of their environmental friendliness, durability, softness, and washability, as well as their antibacterial characteristics. Bamboo fibre is made from the stalks of bamboo plants, which can be found in tropical and subtropical areas all over the world. Textiles made from these stalks have been woven in Asia for thousands of years, dating back to the Han Dynasty (200 BC-AD 200), but the rest of the world has only recently discovered their beauty. Bamboo fibre is used in a variety of applications, including bathroom textiles, medicinal and hygienic clothes, bamboo fashion, and home furnishings. They are antifungal and antibacterial, have a flat surface, and are as thin as hairs. Despite growing concerns regarding its manufacturing volume, bamboo fibre demand is increasing as a result of a growing focus on environmentally friendly textile production. Increasing public awareness about environmental sustainability and conservation, as well as rising demand for natural fabrics, are expected to boost market demand throughout the forecast period. In the medium term, the usage of breakthrough eco-fiber production technologies such as enzyme technology, foam technology, and plasma technology is likely to bring up new prospects. The global Bamboo Fibers market was worth million US dollars in 2018 and is predicted to grow at a CAGR of between 2019 and 2025 to reach million US dollars by the end of 2025. Key Players • Amarjothi Spinning Mills Ltd. • Cheran Spinner Pvt. Ltd. • Gillanders Arbuthnot & Co. Ltd. • H P Cotton Textile Mills Ltd. • Lakshmi Mills Co. Ltd. • Wearit Global Ltd.
Plant capacity: 6,666 Kgs Per Day Plant & machinery: 273 Lakhs
Working capital: N/AT.C.I: Cost of Project: 725 Lakhs
Return: 26.00%Break even: 57.00%
Add to Inquiry Add to Inquiry Basket

Start Printed Circuit Board (PCBs) Production Business

PCBs are used extensively in modern electronic products such as computers, telephones, televisions, and even smaller electronic devices such as smart watches and fitness trackers. Printed wiring boards (PWBs) are critical components that include a foundation board that supports all other parts and circuitry, as well as a patterned layer of electrical tracks printed on top. The four major components of a printed circuit board (PCB) are: • Substrate (optional): The substrate, which is usually constructed of fibreglass, is the first and most crucial phase. Fiberglass is employed in the PCB's core because it strengthens it and helps it withstand fracture. Consider the substrate to be the "skeleton" of the PCB. • Copper Layer: This layer can be copper foil or a full-on copper covering, depending on the board type. Regardless of which method is utilised, the copper's function is the same: it transmits electrical signals from the PCB to the brain and muscles, just like your nervous system. • Solder Mask: The solder mask, a polymer layer that protects the copper from short-circuiting when it comes into contact with the environment, is the third component of the PCB. The solder mask serves as the PCB's "skin" in this situation. • Silkscreen: The silkscreen is the final component on the circuit board. Part numbers, logos, symbols, switch settings, component reference, and test locations are commonly silkscreened on the component side of the board. The silkscreen is also referred to as Television sets, transistor sets, radios, amplifiers, ampligrams, stereo amplifiers, voltage stabilisers, calculators, communications equipment, power supply, public address equipment, computers, and defence and other research organisations all employ printed circuit boards. On today's PCBs, component connection leads are commonly in the shape of a little foot. As a result, they can be immediately soldered to the copper tracks and placed on the same side. This not only saves money by avoiding costly drilling and track hookups through the board, but it also allows for the use of surface mounting devices (SMDS), which are often smaller and potentially less expensive than their traditional counterparts and allow for significantly higher component packing density. Capacitors and resistors are the most common components found in SMD form. These are little rectangular blocks with metal caps on the ends that connect all of the interior electrodes. There are no cables connecting the components. PCBs can be found in practically every electronic product, from consumer electronics like PCs, tablets, cellphones, and gaming consoles to industrial and even high-tech items in the strategic and medical electronics industries. Given the importance of the PCB business in the electronics manufacturing ecosystem, an article titled 'How will the Indian PCB industry grow?' was published in the April 2016 issue of Electronics Bazaar, and included the perspectives of key industry stakeholders. The Indian market is unique in compared to the rest of the world. Because flexible circuits may reduce form factor and eliminate connectors, they are predicted to grow far faster in the worldwide market than rigid PCBs. Most Indian PCB producers, on the other hand, concentrate on single-sided, double-sided, and multi-layered PCBs with four to eight layers. The Indian electronics industry is one of the world's fastest expanding, with domestic manufacturing exceeding $100 billion and expected to reach $400 billion by 2022. As a result, the PCB industry will see significant growth. According to an ELCINA analysis, PCB consumption in the residential market is predicted to expand at a CAGR of 20.56 percent from 2015 to 2020, reaching over US$ 6 billion by 2020, up from US$ 2.38 billion currently. Key Players: • Akasaka Electronics Ltd. (2002) • Akasaka Electronics Ltd. • Amara Raja Electronics Ltd. • Ample Circuit Pvt. Ltd. • At & S India Pvt. Ltd. • B I T Mapper Integration Technologies Pvt. Ltd. • B L G Electronics Ltd.
Plant capacity: Multilayer High Density Interconnect PCBs: 40 SqMtrs. Per Day Multilayer Flex PCBs: 40 SqMtrs. Per Day | Multilayer High Power PCBs: 40 SqMtrs. Per DayPlant & machinery: 260 Lakhs
Working capital: N/AT.C.I: Cost of Project: 594 Lakhs
Return: 27.00%Break even: 58.00%
Add to Inquiry Add to Inquiry Basket

Start Manufacturing Business of AAC Blocks from Silica Sand & Lime Stone Powder

The novel building material autoclaved aerated concrete (AAC) is employed in construction. It is both environmentally friendly and provides good insulation. Autoclaved aerated concrete (AAC), also known as autoclaved cellular concrete (ACC) or simply autoclaved concrete, is a high-strength material manufactured by injecting steam into wet, raw concrete mixes. The shape and size of the air-filled cells created by the aeration process may vary depending on how the concrete mix is prepared and placed in moulds prior to steam injection. Because of its adaptability, AAC can be used for floor slabs, wall panels, acoustic dividers, ceiling tiles, patio covers, and even furniture. Aerated concrete (AAC) is a complete building system consisting of panels and blocks that can be used in residential, commercial, and industrial structures. AAC is a green building material that is fire-resistant, thermally efficient, solid-structured, and simple to work with. AAC has a long history in the construction industry and has established itself as a significant participant. For about 40 years, our country has been creating aerated methods, and their technological abilities and equipment are continually improving. Autoclaved Aerated Concrete Blocks have a high strength-to-weight ratio, low thermal conductivity, temperature and humidity stability, and fire resistance. It can be used in larger construction units due to its low density, which is a considerable benefit in prefabrication. In multi-story structures, significant foundation load savings are realised. As a result, in some industrialised countries, it's becoming more popular as a walling unit. Residential, multistory buildings, commercial, and industrial developments can all benefit from AAC. Natural elements such as sand, lime, and water are used to create the items. These raw components are combined to create a substance with a significant number of air pores, which is known as aerated concrete. The stiff structure of calcium silicate hydrate and the fine holes (almost 70% of the product) give AAC its excellent material characteristics. "The construction industry's autoclaved aerated concrete sector is now through a substantial expansion cycle. Because customers are looking for lower pricing, the autoclaved aerated concrete industry must compete. Although AAC is not a new construction method, it is being employed in India for the first time. Autoclaved aerated concrete ("AAC") is one of many "green" or "environmentally friendly" building materials available today, however it is still relatively obscure in India. AAC is a type of lightweight prefabricated stone. Natural aerated concrete (AAC) is a type of aerated concrete that is utilised in a variety of commercial, industrial, and residential applications. By using less material and producing less waste and pollution, AAC saves time and money. Last year, the Indian government approved 100 percent foreign direct investment in integrated township development. After China, India is currently the second most popular FDI destination. This industry will benefit from a big and expanding middle class population of more than 300 million people, a changing lifestyle, lower living costs, and so on. As a result of industrialization, urbanisation, economic development, and people's rising expectations for improved quality of life, the Indian construction industry, which is an integral part of the economy and a conduit for a significant portion of the country's development investment, is poised for growth in the coming years. The volume of cement and AAC commodities provided to the broader Indian market in a given period is referred to as the market size of cement and AAC. As a result, supply rather than demand determines market size. Between 2020 and 2025, the global autoclaved aerated concrete (AAC) market is expected to increase at a CAGR of 6.0 percent, from USD 18.8 billion in 2020 to USD 25.2 billion in 2025. The market is being driven by increasing urbanisation and industrialization, infrastructural growth, higher demand for lightweight construction materials, expanding preferences for low-cost housing, and a growing focus on green and soundproof buildings. Because of increased demand for AAC blocks in both residential and non-residential enterprises, the blocks element is the largest and fastest-growing category. In addition to their insulating properties, AAC blocks have the advantage of being quick and easy to install, as the material can be routed, sanded, and cut to size on site. In terms of volume, non-residential is predicted to be the fastest-growing end-use industry in the AAC market in the next years. Aesthetics and functionality are the two most important factors to consider when designing a company organisation. AAC is the second most often used building material in the earth, after concrete. AAC is frequently produced in the form of blocks or panels. AAC blocks, unlike concrete masonry units, are solid and do not have moulded core holes. Key Players • Ashoka Pre-Con Pvt. Ltd. • Baliapatam Tiles & Business Ventures Ltd. • Biltech Building Elements Ltd. • Gannon Dunkerley & Co. Ltd. • H I L Ltd. • J K Lakshmi Cement Ltd. • Keltech Energies Ltd.
Plant capacity: 300 Cu.Mtres Per DayPlant & machinery: 600 Lakhs
Working capital: N/AT.C.I: Cost of Project: 1070 Lakhs
Return: 25.00%Break even: 51.00%
Add to Inquiry Add to Inquiry Basket

Production Business of Glass Vials for Medicine (for Cosmetic & Other Injectable)

Glass vials are commonly used to package liquid medicines, elixirs, and other commodities that must be delivered in small quantities. Glass vial packaging is more convenient to use than plastic bottles or cardboard boxes, and it offers additional advantages such as safety, mobility, and other advantages. Vials are small glass containers that can be used to hold chemicals and food in addition to chilled medicine. To be effective, liquids, dry powders, and lyophilized substances in vials must be reconstituted before use. Because vials are the most frequent type of packaging for injectable medicines and vaccines, they are exposed to a wide variety of temperatures throughout their lives. Despite the availability of plastic vials, glass vials are extensively used in medicine to package liquids such as vaccinations and other medications. They're often packaged in brown bottles with screw-on caps, though some people prefer plastic vials to glass bottles because glass bottles can be harmful if dropped or damaged. Plastic or glass vials are commonly used in modern containers. They're commonly employed in medical and molecular biology applications to hold small amounts of liquid. Closure systems come in a variety of shapes and sizes, and they're all used on a regular basis. Screw vials (closed with a screw cap or dropper/pipette), lip vials (closed with a cork or plastic stopper), and crimp vials (closed with a cork or plastic stopper) are all examples of glass vials (closed with a rubber stopper and a metal cap). With plastic vials, other closure methods, such as 'hinge caps,' which snap shut when pressure is applied, can be used. Other names for them are flip-tops and snap caps. Vials are most commonly used in the medical field. They're utilised to organise diagnoses and specimens. Swabs are kept in tubes, which are similar to vials. In the criminal court system, forensic labs frequently use vials. The entomology division of the forensics division investigates insects and violent crimes. Killing jars are small jars used to collect and kill insects with minimal injury. In certain facilities, insects are raised from eggs kept in clear vials, allowing for more accurate monitoring of the growth process. Vials are also used by criminal investigators to try to keep crime scenes clean. Glass is still the ideal material for storing sensitive medications and injectables, and it's also used extensively in general laboratory applications. Glass shields medicines and formulations from light and moisture while allowing them to last a long time on the shelf. Glass transports some of the world's most precious liquids, from scorpion venom to insulin. Benefits of Glass Vial: The smooth, transparent surface of a glass vial allows you to visually evaluate the contents for contamination or degradation. One of the reasons why glass is the most commonly utilised container material for injectable liquids is because of this. Borosilicate glass is chemically inert, with the exception of a few acids, and will not react with other chemicals. As a result, you won't have to worry about your samples being damaged by borosilicate glass, and you can count on a lengthy shelf life. Due to its low coefficient of thermal expansion, borosilicate glass is less susceptible to thermal shock than other materials. Borosilicate glass is good for chromatography because of its characteristics. The India Glass Packaging Market is estimated to develop at a CAGR of 6.94 percent over the forecast period. Packaging manufacturing and production, as well as related enterprises, are only active in a few countries where packaging makes a significant contribution to GDP. The focus has shifted away from the country's glass packagers and toward the pharmaceutical industry. Vitamins, pharmaceuticals, and other goods stored in glass vials will not lose their aroma or taste since glass is nonporous. It decreases the possibility of evaporation or contamination from items trapped in the pores of a container. Glass is made from a variety of basic resources, including sand, and is reusable and sustainable. You can feel good about using glass vials because you're helping to save the environment. The Global Vials Market was valued at USD 3,200.2 million in 2021, and it is expected to increase at a CAGR of 6.8% over the next five years. North America is the largest market for vials. The Global Vials Market was valued at USD 3,200.2 million in 2021, and it is expected to increase at a CAGR of 6.8% over the next five years. Vials have been the standard packaging for drugs for many years and are expected to continue to be so in the future. India's pharmaceutical and biotechnology industries employ the world's second-largest workforce. The pharmaceutical business is predicted to grow in size during the next decade, according to the Indian Economic Survey 2021. The pharmaceutical market in the country is expected to grow from USD 41 billion in 2021 to USD 65 billion in 2024, and then to USD 120-130 billion by 2030. Key Players: • Elder Projects Ltd. • Haldyn Glass Ltd. • Hindusthan National Glass & Inds. Ltd. • Makcur Laboratories Ltd. • Nipro Tube Glass Pvt. Ltd. • S G D Pharma India Pvt. Ltd. • Schott Kaisha Pvt. Ltd.
Plant capacity: 2,00,000 Pcs Per DayPlant & machinery: 24 Cr
Working capital: N/AT.C.I: Cost of Project: 34 Cr
Return: 23.00%Break even: 53.00%
Add to Inquiry Add to Inquiry Basket

Start Production Business of Micronutrient Fortified Energy Dense Food

Energy Dense Food with Micronutrient Fortification ensures that you obtain all of the critical micronutrients you need to stay healthy and eat well. Micronutrient Fortified Energy Dense Food adds vitamins A, C, B12, zinc, and iron to food and meals to give consumers the most nutritional options at every meal of the day. Deficits in one or more micronutrients, such as iron, zinc, and vitamin A, are common in low- and middle-income nations, putting millions of people's physical and mental health at danger. Fortification of foods is a low-cost method that has been shown to benefit health, the economy, and society. Food fortification has grown in popularity in LMICs over the last two decades for a variety of reasons, including increased urbanisation and rising household spending power, which has led to a greater reliance on processed foods by a larger proportion of the population. Iron insufficiency kills 0.8 million people per year (1.5 percent of all deaths), whereas vitamin A deficiency kills a similar number of people, resulting in a large number of lives lost. According to a large body of research, LSFF appears to have public health implications in both HICs and LMICs. According to a recent review of 50 trials in LMICs, iodine, folic acid, vitamin A, and iron fortification resulted in significant decreases in serious disease. Several country-level studies on the effect of food fortification on micronutrient status have yielded encouraging results. The market for micronutrient fortified foods is expected to grow at a CAGR of 6.1 percent from 2021 to 2026, reaching $172.4 million in 2020. Foods that have been supplemented with nutrients that aren't naturally present in them are known as fortified foods. These foods are designed to provide nutrition as well as health benefits. Calcium could be added to fruit juice extracts because vitamin D is commonly supplemented in milk. As a result of fortified food consumption, common nutrient-deficiency ailments such as rickets and pellagra have practically vanished, and this driver is propelling the fortified foods market forward over the projected period of 2021-2026. While mandatory food fortification has been used in high-income countries (HIC) to prevent micronutrient deficiencies since the 1920s in Europe and North America—when the first salt was iodized—it is still uncommon in LMICs, where food systems are failing to deliver nutritionally adequate diets due to the production and consumption of only a few major starchy food crops (maize, rice, wheat) with low micronutrient content and/or bioavailability.
Plant capacity: 1600 Kgs Per DayPlant & machinery: 23 Lakhs
Working capital: N/AT.C.I: Cost of Project: 56 Lakhs
Return: 28.00%Break even: 65.00%
Add to Inquiry Add to Inquiry Basket

Ethanol from Broken Rice Production

Ethanol is a colourless, transparent liquid with a distinctive and pleasant odour. It has a moderately pleasant flavour in dilute aqueous solutions, but a scorching flavour in more concentrated solutions. Ethanol (CH3CH2OH) is a chemical substance with a hydroxyl group (-OH) attached to a carbon atom in each of its molecules. Ethanol is a colourless, combustible, and mildly poisonous chemical molecule found in alcoholic beverages. It is also known as ethyl alcohol, drinking alcohol, or grain alcohol. It is commonly referred to as "alcohol" in everyday discourse. EtOH, CH3CH2OH, and C2H5OH, as well as the empirical formula C2H6O, are some of its chemical formulae (which it shares with diethyl ether). Carbohydrates have been fermented to produce ethanol since prehistoric times. This approach continues to produce all ethanol for human use as well as more than half of the ethanol used in industry. The raw ingredient is simple sugars. The yeast enzyme zymase converts simple carbohydrates to ethanol and carbon dioxide. Ethanol can be used as a standalone vehicle fuel or combined with gasoline to form "gasohol." The most common ethanol-to-gasoline blends have 10% and 85% ethanol, respectively. In the United States, about 1 billion gallons of ethanol are combined with gasoline each year. A 10% ethanol mixture will run OK in the majority of spark-ignited gasoline engines. The majority of spark-ignited gasoline engines will run fine with a 10% ethanol mixture. Most spark-ignited gasoline style engines will run well with mixtures of 10% ethanol. Anhydrous ethanol (ethanol with less than 1% water) can be blended with gasoline in varying amounts up to pure ethanol (E100), and most spark-ignited gasoline style engines will run well with mixtures of 10% ethanol (E10). The majority of cars on the road in the United States now can operate on ethanol mixes of up to 10%, and 10% ethanol fuel is required in some cities where harmful levels of auto emissions are feasible. The most common application of ethanol is in the manufacture of gasoline. The amount of greenhouse gases released during combustion is lowered when a fraction of bioethanol is added to conventional gasoline. In Europe, bioethanol blends with 5 to 10% bioethanol by volume are frequently utilised. E5 or E10 is the designation for the resulting fuel. Far larger combinations, up to and including 100 percent bioethanol vehicle operation, are typical in other parts of the world, such as South America. Flexible fuel vehicles (FFVs) can run on any combination of gasoline, methanol, or ethanol. Ethanol is also utilised in the manufacturing of paints, inks, varnishes, and alkyd resins, as well as as a heat bearer, in aerosols, and in the offshore industries, to name a few. Ethanol is used as a flavour enhancer, in winemaking, and as a foundation for a variety of drinks and confectionery. One of the most often used chemicals in medications is ethanol. Cough syrup, medical capsules, and disinfectants all contain it as a solvent and chemical reactant. Due to increased ethanol usage in sectors such as fuel additives and beverages, the India ethanol market is expected to rise from $ 2.50 billion in 2018 to $ 7.38 billion by 2024, with a CAGR of 14.50 percent from 2019 to 2024. Ethanol is a prevalent alcoholic beverage that can be found in a variety of forms such as beer, cider, wine, spirits, and ale. In an effort to minimise the country's reliance on imported crude oil, the Indian government is pressuring sugar growers to manufacture ethanol for Oil Marketing Companies (OMCs). According to the OECD-FAO Agricultural Outlook 2018-2027, demand for biofuels is shifting to emerging economies, which are rapidly establishing policies to promote the domestic biofuels sector. Furthermore, according to market projections, developing countries will account for 84 percent of worldwide ethanol demand growth. Several countries have mandatory blending legislation that require a certain quantity of ethanol and biodiesel to be used in transportation fuel. In 2019, the global demand for industrial ethanol is expected to reach around 116.9 billion litres. Between 2020 and 2025, demand is expected to grow at a CAGR of 2.5 percent, reaching a volume of around 135.5 billion litres. Chemicals, medications, plastics, and the beverage sector, which includes cosmetics, paints, cleaning products, and alcoholic beverages, account for approximately 13-15 percent of overall ethanol consumption. Key Players: • Ammana Bio Pharma Ltd. • Ghaziabad Organics Ltd. • India Glycols Ltd. • Jeypore Sugar Co. Ltd. • Piccadily Sugar & Allied Inds. Ltd. • Shamanur Sugars Ltd.
Plant capacity: Ethanol: 30 Units per day | Cattle feed as by Product: 27 Units per dayPlant & machinery: 24 Cr
Working capital: N/AT.C.I: Cost of Project: 39 Cr
Return: 26.00%Break even: 41.00%
Add to Inquiry Add to Inquiry Basket

Business Plan for Abrasive Grinding Wheels Business

Metalworking and machining industries employ abrasive grinding wheels to grind, shape, and polish metal products. These metalworking tools are available in a variety of shapes, sizes, and materials, each of which influences their function and performance. The cylindrical abrasive grinding wheel is the most popular form of grinding wheel (CAGW). The grinding medium for these wheels is the abrasive substance that spins between two metal hubs that keep the wheel together and allow for solid installation on the machine spindle or chuck. Natural or synthetic abrasive materials are linked together in a matrix to form grinding wheels. While some home workshop owners may be familiar with these tools, the great majority were invented and used by industry. Grinding wheels have been an integral part of this business for over 150 years. Grinding wheels are a cost-effective solution for manufacturers to shape and finish metals and other materials. Abrasives are often the only means to produce items with precise dimensions and smooth surfaces. Grinding wheels are used to cut steel and masonry blocks, sharpen knives, drill bits, and a variety of other equipment, and clean and prepare surfaces for painting or plating in practically every industrial organisation in the world today. Grinding wheels, in particular, are used to ensure that the precision of automotive camshafts and jet engine rotors is maintained. The three types of abrasive product manufacturing include abrasive grain production, bonded abrasive product production, and coated abrasive product production. Other abrasive producers use ingredients developed by abrasive grain producers to make abrasive products. When choosing grinding wheels, there are a number of critical factors to consider. Grain size, material, wheel grades, grain spacing, and bond type are five of these factors. The colour codes on the wheel's label represent all of these characteristics. Grinding wheels come in a variety of shapes and sizes, each with its own set of characteristics. Sharpening, polishing, cutting, and smoothing metal are just a few of the applications. The abrasive used, the size created, and the ultimate result all influence them. The following are some examples: The most basic grinding wheels can be found in practically each workplace on the planet. They're used in a variety of tools, including chisels. It is capable of grinding a wide variety of materials. Straight grinding wheels are similar to large-diameter grinding wheels, although they are significantly larger. The outside of circular products, such as carbide blanks, is ground with these wide-surfaced wheels. It's also used in the oil and thermal spray industries for OD grinding. Grinding wheels with a diameter of up to 36 inches are available. The cylinder, often known as the wheel ring, is used to create flat surfaces. The end face of the wheel is used for grinding. Grinding Cup Wheel: Polishing stone or concrete is one of the most common applications for Grinding Cup Wheels. Dish grinding wheels resemble cup grinding wheels, except they are shallower and have a thinner surface edge. The market is likely to be driven by rising demand for grinding and polishing applications in end-use sectors such as automotive, metal fabrication, electronics, and electrical (E&E) equipment and machinery. The product is useful for changing operational parameters in the manufacturing of automobile components, such as noise levels and high-performance engine carbon dioxide emissions, as well as component machining. The India Abrasive Market was valued at USD362.26 million in 2021, with a predicted CAGR of 6.61 percent over the next five years. Initiatives like the "Smart Cities Mission" and "Housing for all," as well as rising demand for electrical gadgets and automobiles, are propelling India's abrasive industry forward. Key Players • Carborundum Universal Ltd. • Sak Abrasive Ltd. • Sak Industries Pvt. Ltd. • Sterling Abrasives Ltd. • Wendt (India) Ltd.
Plant capacity: Resin Bonded Grinding Wheel Size (180x6): 500 Pcs Per Day | Resin Bonded Grinding Wheel Size (230x3): 740 Pcs Per Day | Vitrified Grinding Wheel Size (180x30): 235 Pcs Per Day | Vitrified Grinding Wheel Size (230x20)253 Pcs Per DayPlant & machinery: 150 Lakhs
Working capital: N/AT.C.I: Cost of Project: 343 Lakhs
Return: 28.00%Break even: 56.00%
Add to Inquiry Add to Inquiry Basket

Information
  • One Lac / Lakh / Lakhs is equivalent to one hundred thousand (100,000)
  • One Crore is equivalent to ten million (10,000,000)
  • T.C.I is Total Capital Investment
  • We can modify the project capacity and project cost as per your requirement.
  • We can also prepare project report on any subject as per your requirement.
  • Caution: The project's cost, capacity and return are subject to change without any notice. Future projects may have different values of project cost, capacity or return.

Add multiple items to inquiry
Select the items and then press Add to inquiry button

Page 251 of 293 | Total 2926 projects in this category
« Previous   Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 .... 251 292 293   Next »

About NIIR PROJECT CONSULTANCY SERVICES

Hide »

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

Our various services are: Detailed Project Report, Business Plan for Manufacturing Plant, Start-up Ideas, Business Ideas for Entrepreneurs, Start up Business Opportunities, entrepreneurship projects, Successful Business Plan, Industry Trends, Market Research, Manufacturing Process, Machinery, Raw Materials, project report, Cost and Revenue, Pre-feasibility study for Profitable Manufacturing Business, Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Business Opportunities, Investment Opportunities for Most Profitable Business in India, Manufacturing Business Ideas, Preparation of Project Profile, Pre-Investment and Pre-Feasibility Study, Market Research Study, Preparation of Techno-Economic Feasibility Report, Identification and Selection of Plant, Process, Equipment, General Guidance, Startup Help, Technical and Commercial Counseling for setting up new industrial project and Most Profitable Small Scale Business.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

^ Top