Google Search

Search

Already a Member ?

Best Business Opportunities in Tamil Nadu- Identification and Selection of right Project, Thrust areas for Investment, Industry Startup and Entrepreneurship Projects

Automotive Industry: Project Opportunities in Tamil Nadu

 

PROFILE:

The automotive industry in India is one of the largest in the world and one of the fastest growing globally. India's passenger car and commercial vehicle manufacturing industry is the seventh largest in the world, with an annual production of more than 3.7 million units in 2010. Automotive industry is the key driver of any growing economy. It plays a pivotal role in country's rapid economic and industrial development. It caters to the requirement of equipment for basic industries like steel, non-ferrous metals, fertilisers, refineries, petrochemicals, shipping, textiles, plastics, glass, rubber, capital equipments, logistics, paper, cement, sugar, etc. It facilitates the improvement in various infrastructure facilities like power, rail and road transport. Due to its deep forward and backward linkages with almost every segment of the economy, the industry has a strong and positive multiplier effect and thus propels progress of a nation. The automotive industry comprises of the automobile and the auto component sectors.

 

RESOURCES:

Tamil Nadu is being popularly hailed as “Detroit” of India as it has a large Automobile and Ancillary sector. Automobile industry plays a crucial role in the State economy and has been one of the key driving factors, contributing 8% to State GDP and giving direct employment to 2,20,000 people. More than100 companies in the Automotive and Auto Ancillary industry are located in this state, maintaining highest production norms by implementing internationally recognized quality standards. Chennai has emerged as India's largest automobile and auto components exporter in India. Hyundai has made Chennai the manufacturing and export hub for its small cars. Tamil Nadu has the largest auto components industry base. Currently, Tamil Nadu accounts for above 32% of India's production capacity. Automobile manufacturers operate "Just - in-Time" avoiding inventory costs. The state has a well-developed automotive and auto component industry. It is the hub of Indian automobiles industry. Several automobile and automobile ancillary units are located in Tamil Nadu. It has manufacturing facilities across the automotive spectrum from tractors to battle tanks. Global auto majors like, Hindustan Motors and Mitsubishi have commenced production plants. Ashok Leyland and TAFE have set up expansion plants in Chennai. Fortune 500 companies such as Hyundai and Ford have established manufacturing facilities in the state.

 

GOVERNMENT POLICIES:

Government brought out a very innovative Policy "Ultra Mega Policy for Integrated Automobile Projects" that offers a very attractive package of support to automobile projects investing more than Rs.4000 Crores. As a result of this Policy, since May 2006, investments attracted by Tamil Nadu is automobiles & components manufacturing is Rs.21900 Crores, almost 5 times of the Investments attracted during previous 15 years (May 1991-April 2006). The total employment potential in these new projects is: 1.20 lakhs (direct + Indirect). Govt of India is currently implementing a project "National Automotive Testing R&D Infrastructure Project" (NATRIP) in Oragdam near Chennai at a project cost of about Rs.450 Crores. This project aims at facilitating introduction of world-class automotive safety, emission and performance standards in India as also ensure seamless integration of our automotive industry with the global industry.

 

Textile: Project Opportunities in Tamil Nadu

 

PROFILE:

The textile industry is primarily concerned with the production of yarn, and cloth and the subsequent design or manufacture of clothing and their distribution. The raw material may be natural or synthetic using products of the chemical industry. India Textile Industry is one of the leading textile industries in the world. Though was predominantly unorganized industry even a few years back, but the scenario started changing after the economic liberalization of Indian economy in 1991. The opening up of economy gave the much-needed thrust to the Indian textile industry, which has now successfully become one of the largest in the world.

RESOURCES:

Tamil Nadu has traditional strengths in the textile sector. In the post-quota abolition regime, the Textile Industry has tremendous opportunities for growth as well as challenges to be met. Availability of cotton at fair prices and at right quality, the backlog in modernization, supply of inputs particularly credit and power at reasonable rates etc. are all essential for the textile industry to be competitive in an increasingly uncertain trading environment. The Handlooms, Power looms, Hi-Tech Weaving Parks, Garments & Hosiery, Processing Apparel Park are important components of the textile industry.

GOVERNMENT POLICIES:

 

The Ministry of Textiles in India has formulated numerous policies and schemes for the development of the textile industry in India. The government of India has been following a policy of promoting and encouraging the handloom sector through a number of programmes. Most of the schematic interventions of the government of India in the ninth and tenth plan period have been through the state agencies and co-operative societies in the handloom industries. Some of the major acts relating to textile industry include: Central Silk Board Act, 1948, The Textiles Committee Act, 1963, The Handlooms Act, 1985, Cotton Control Order, 1986, The Textile Undertakings Act, 1995Government of India is earnestly trying to provide all the relevant facilities for the textile industry to utilize its full potential and achieve the target. The textile industry is presently experiencing an average annual growth rate of 9-10% and is expected to grow at a rate of 16% in value, which will eventually reach the target of US $ 115 billion by 2012. The clothing and apparel sector are expected to grow at a rate of 21 %t in value terms.

 

Leather: Project Opportunities in Tamil Nadu

 

PROFILE:

Leather Industry occupies a place of prominence in the Indian economy in view of its massive potential for employment, growth and exports. There has been increasing emphasis on its planned development, aimed at optimum utilisation of available raw materials for maximising the returns, particularly from exports.  The leather and leather products industry is one of India’s oldest manufacturing industries that catered to the international market right from the middle of the nineteenth century. The leather industry employs about 2.5 million people and has annual turnover of Rs. 25,000 crores. India is the third largest leather producer in the world after China and Italy

RESOURCES:

Leather industry in Tamil Nadu is considered to be very ancient and some say it is of more than two centuries old. The state accounts for 70 per cent of leather tanning capacity in India and 38 per cent of leather footwear and components. The exports from Tamil Nadu are valued at about US $ 762 million, which accounts for 42 per cent of Indian leather exports. Hundreds of leather and tannery industries are located around Vellore, Dindigul and Erode its nearby towns such as Ranipet, Ambur, Perundurai, Nilakottai and Vaniyambadi. The Vellore district is the top exporter of finished leather goods in the country. That leather accounts for more than 37% of the country's Export of Leather and Leather related products such as finished leathers, shoes, garments, gloves and so on. The tanning industry in India has a total installed capacity of 225 million pieces of hide and skins of which Tamil Nadu alone contributes to an inspiring 70%. Leather industry occupies a pride of place in the industrial map of Tamil Nadu. Tamil Nadu enjoys a leading position with 40% share in India's export.

GOVERNMENT POLICIES:

Government policies in support of the industry:

• The entire leather sector is now de-licensed and de-reserved, paving way for expansion on modern lines with state-of-the art machinery and equipment

• 100% Foreign Direct Investment and Joint Ventures permitted through the automatic route

• 100% repatriation of profit and dividends, if investments made in convertible foreign currency. Only declaration to this effect to the Reserve Bank is required.

• Promotion of industrial parks (one leather park in Andhra Pradesh, one leather goods park in West Bengal, one footwear park in Tamil Nadu and one footwear components park in Chennai).

• Funding support for modernizing manufacturing facilities 

• Funding support for establishing design studios

• Duty free import of raw materials (namely raw skins, hides, semi finished leather and finished leather) and of embellishments and components under specific scheme

• Concessional duty on import of specified machinery for use in leather sector

• Duty neutralization / remission scheme

Food Processing: Project Opportunities in Tamil Nadu

 

PROFILE:

India is the world's second largest producer of food next to China, and has the potential of being the biggest with the food and agricultural sector. The Indian food processing industry stands at $135 billion and is estimated to grow with a CAGR of 10 per cent to reach $200 billion by 2015. The food processing industry in India is witnessing rapid growth. In addition to the demand side, there are changes happening on the supply side with the growth in organised retail, increasing FDI in food processing and introduction of new products. India's food processing sector covers fruit and vegetables; meat and poultry; milk and milk products, alcoholic beverages, fisheries, plantation, grain processing and other consumer product groups like confectionery, chocolates and cocoa products, Soya-based products, mineral water, high protein foods etc.

RESOURCES:

Tamil Nadu has historically been an agricultural state and is a leading producer of agricultural products in India. In 2008, Tamil Nadu was India's fifth biggest producer of Rice. The total cultivated area in the State was 5.60 million hectares in 2009-10. The state is the largest producer of bananas, flowers, tapioca, the second largest producer of mango, natural rubber, coconut, groundnut and the third largest producer of coffee, sapota, Tea and Sugarcane. Tamil Nadu's sugarcane yield per hectare is the highest in India. Among states in India, Tamil Nadu is one of the leaders in livestock, poultry and fisheries production. Tamil Nadu had the second largest number of poultry amongst all the states and accounted for 17.7% of the total poultry population in India. With the third longest coastline in India, Tamil Nadu represented 27.54% of the total value of fish and fishery products exported by India in 2006.

GOVERNMENT POLICIES:

Tamil Nadu government has come out with following policies :

·         Raise in processed foods in the market from 1% to 10%.

·         Raise value addition levels from 7% to 30 %

·         Food processing industry is one of the growing areas identified for exports. Free Trade Zones (FTZ) and Export Processing Zones (EPZ) have been set up with all infrastructures. Also, setting up of 100% Export oriented units (EOU) is encouraged in other areas. They may import free of duty all types of goods, including capital foods.

·         Capital goods, including spares up to 20% of the CIF value of the Capital goods may be imported at a concessional rate of Customs duty subject to certain export obligations under the EPCG scheme, Export Promotion Capital Goods. Export linked duty free imports are also allowed.

·         Units in EPZ/FTZ and 100% Export oriented units can retain 50% of foreign exchange receipts in foreign currency accounts.

·         50% of the production of EPZ/FTZ and 100% EOU units is saleable in domestic tariff area.

Paper industry: Project Opportunities in Tamil Nadu

 

PROFILE:

Paper Industry in India is riding on a strong demand and on an expanding mood to meet the projected demand of 8 million tons by 2010 & 13 million tons by 2020. The Indian Paper Industry is a booming industry and is expected to grow in the years to come. The usage of paper cannot be ignored and this awareness is bound to bring about changes in the paper industry for the better. It is a well known fact that the use of plastic is being objected to these days. The reason being, there are few plastics which do not possess the property of being degradable, as such, use of plastic is being discouraged. Excessive use of non degradable plastics upsets the ecological equilibrium. The Paper industry is a priority sector for foreign collaboration and foreign equity participation upto 100% receives automatic approval by Reserve Bank of India. Several fiscal incentives have also been provided to the paper industry, particularly to those mills which are based on non-conventional raw material.

RESOURCES:

Tamil Nadu continues to be one of the forerunners in the production of paper and paper products. There are 74 paper mills in operation in Tamil Nadu. The total paper production was 3.7 lakh tonnes in 2005 06 which accounts for 17.30% share of the national production, next only to Andhra Pradesh.  As the country’s forest cover is much below the desired level, the Government of Tamil Nadu established TNPL in 1979 to manufacture newsprint and paper using bagasse (sugarcane waste) as the primary raw material. This is the largest paper mill in India with an installed capacity of 230,000 TPA. Tamil Nadu Newsprint and Papers Limited (TNPL) was established by the Government of Tamil Nadu to produce newsprint and writing paper using bagasse, a sugarcane residue.

GOVERNMENT POLICIES:

Several policy measures have been initiated in recent years to remove the bottlenecks of availability of raw materials and infrastructure development. To bridge the gap of short supply of raw materials, duty on pulp and waste paper and wood logs/chips have been reduced. In the year 1979, Government of Tamil Nadu established Tamil Nadu Newsprint and Papers Limited as a public limited company under the Companies Act, 1956. Commencing production in 1984, with the support of Government of Tamil Nadu, the company has made rapid strides and has emerged as the largest paper mill in India at a single location. With the on-going expansion plan to increase paper production capacity from the present 2.45 lakh tons to 4 lakh tons per annum, TNPL is poised to become a Rs.2000 crores company by 2011-12.

Cement Industry: Project Opportunities in Tamil Nadu

 

PROFILE:

India is the second largest producer of quality cement in the world. The cement industry in India comprises 139 large cement plants and over 365 mini cement plants. Industry's capacity at beginning of the year 2008-09 was 198.30 million tonne (MT) which increased to 219 MT at the close of the year. The initiatives provided by the Government of India to various infrastructure projects, road network and housing activities will provide required stimulus towards the growth of cement industry in India. Domestic demand for cement has been increasing at a fast pace in India & it has surpassed the economic growth of the country.

RESOURCES:

Tamil Nadu is a leading producer of cement in India. It has 13 major cement factories.  It is a home for leading brands in the country such as Chettinad Cements (Karur), Dalmia Cements (Ariyalur), Ramco Cements (Madras Cement Ltd.), India Cements (Sankakari, Ariyalur), Grasim etc. The production of cement in the State increased from 126 lakh tonnes in 2004-05 to 142.89 lakh tonnes in 2005-06 with a growth rate of 13.4% accounting for 10.08 % of cement production at the national level, occupying the 5th place.  However, it may be noted that, the cement production in the private sector has been showing an increasing trend whereas production in the public sector has decreased to 7.85 lakh tonnes from 8.06 lakh tonnes in the public sector for the corresponding period.

GOVERNMENT POLICIES:

Government policies have affected the growth of cement plants in India in various stages. The control on cement for a long time and then partial decontrol and then total decontrol has contributed to the gradual opening up of the market for cement producers. The prices that primarily control the price of cement are coal, power tariffs, railway, freight, royalty and cess on limestone. Interestingly, all of these prices are controlled by government. Cement industry consumes about 5.5bn units of electricity annually while one ton of cement approximately requires 120-130 units of electricity. Power tariffs vary according to the location of the plant and on the production process. The state governments supply this input and hence plants in different states shall have different power tariffs. Another major hindrance to the industry is severe power cuts.

 

Waste management: Project Opportunities in Andhra Pradesh

PROFILE:

Waste utilization, recycling and reuse plays a major role in limiting resource consumption and the environmental impact of waste. Recycling is an integral part of any waste management system as it represents a key utilization alternative to reuse and energy recovery (Waste-to-Energy). Which option is ultimately chosen depends on the quality, purity and the market situation. Hazardous waste management is a new concept for most of the Asian countries including India. The lack of technical and financial resources and the regulatory control for the management of hazardous wastes in the past had led to the unscientific disposal of hazardous wastes in India, which posed serious risks to human, animal and plant life.

 

RESOURCES:

Municipal Solid Waste (MSW) generation in Chennai, the fourth largest metropolitan city in India, has increased from 600 to 3500 tons per day (tpd) within 20 years. The highest per capita solid waste generation rate in India is in Chennai (0.6 kg/d). Chennai is divided into 10 zones of 155 wards and collection of garbage is carried out using door-to-door collection and street bin systems. The collected wastes are disposed at open dump sites located at a distance of 15 km from the city.  Recent investigations on reclamation and hazard potential of the sites indicate the need for the rehabilitation of the sites.  Chennai is the first city in India to contract out MSWM services to a foreign private agency- ONYX, a Singapore based company. The scope of privatization includes activities such as sweeping, collection, storing, transporting of MSW and creating public awareness in three municipal zones.  ONYX collects about 1100 Metric tons of waste from three zones per day and transports it to open dumps.

 

GOVERNMENT POLICIES:

National policy on waste management is set out in the October 1998 policy statement on waste management - Changing our Ways. It outlines the Government's policy objectives in relation to waste management, and suggests some key issues and considerations that must be addressed to achieve these objectives. The policy is firmly grounded in an internationally recognised hierarchy of options, namely prevention, minimisation, reuse/recycling, and the environmentally sustainable disposal of waste which cannot be prevented or recovered.

We can provide you detailed project reports on the following topics. Please select the projects of your interests.

Each detailed project reports cover all the aspects of business, from analysing the market, confirming availability of various necessities such as plant & machinery, raw materials to forecasting the financial requirements. The scope of the report includes assessing market potential, negotiating with collaborators, investment decision making, corporate diversification planning etc. in a very planned manner by formulating detailed manufacturing techniques and forecasting financial aspects by estimating the cost of raw material, formulating the cash flow statement, projecting the balance sheet etc.

We also offer self-contained Pre-Investment and Pre-Feasibility Studies, Market Surveys and Studies, Preparation of Techno-Economic Feasibility Reports, Identification and Selection of Plant and Machinery, Manufacturing Process and or Equipment required, General Guidance, Technical and Commercial Counseling for setting up new industrial projects on the following topics.

Many of the engineers, project consultant & industrial consultancy firms in India and worldwide use our project reports as one of the input in doing their analysis.

We can modify the project capacity and project cost as per your requirement.
We can also prepare project report on any subject as per your requirement.

Page 268 of 300 | Total 2993 projects in this category
« Previous   Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 .... 268 299 300   Next »

Add multiple items to inquiry
Select the items and then press Add to inquiry button

Select all | Clear all Sort by

Flat Glass Manufacturing Business

Glass has a microscopic structure that resembles a liquid in which the constituent parts combine to form an unpredictable network with no long-range order. The term "glass" also applies to cooled melts. Glass in the form of flat sheets makes up the majority of transparent everyday items. In addition to photovoltaic and solar thermal panels, windscreens and windows for automobiles and other modes of transportation, windows, and building facades are all made with it. Numerous other products, including furniture, "street furniture" (such bus stops), appliances, electronics, and interior fittings and decoration, are also made using it, albeit in much smaller quantities. This component is necessary for today's civilization. However, because of its unique quality of transparency, people usually ignore it and the advantages it brings to their lives. Glass is any amorphous substance that is created by lowering the temperature of a melt, independent of its chemical composition or the range of temperatures at which it solidifies. Glass develops the mechanical properties of a solid body as a result of the gradual viscosity development. Glass melts at temperatures between 1000 and 2000 °C. Uses and Application Glass in Commercial Buildings Developments in glass technology, large commercial buildings may now be converted into energy-efficient structures that maximize natural sunlight while conserving the environment, the climate, and saving energy. Glass in Residential Houses Glass proves to be a particularly attractive and modern alternative to traditional building materials like brick, polycarbonate, or wood. How much natural light enters the house depends on how much glass is used. This enhances the comfort and pleasantness of the home with today's high-tech glass solutions without compromising environmental sustainability, security, or safety. Interior Design Innovative interior design alternatives made possible by glass can improve a space's impression of light and space while also introducing colour and movement. Due to advancements in glass manufacturing technology, this attractive material may now be used for structural purposes in addition to decorative ones, making it more useful than ever. Glass in photovoltaic applications Solar energy is directly turned into electricity using photovoltaic systems. There is a vast spectrum of technology available to achieve specific goals, from residential systems to utility size. The range of solar panel forms and colours available gives designers and developers more choice when integrating designs and creating integrated applications (BIPV). One of the other photovoltaic techniques is thin film, in which solar cells are made on glass using a number of thin sheets. In these technologies, transparent conductive coated glass can be used as the front glass on which the films are formed. The conductive coating, which also transmits the power generated by the modules outside of them, illuminates the photoactive films. Other Glass Applications Flat glass is used in a wide range of different applications in addition to the primary ones already mentioned in solar energy, transportation, and architecture. These actual examples demonstrate how glass can be a source of practicality, style, health, security, and safety. Appliances Appliances for the home, workplace equipment, and other uses frequently employ flat glass. Tempered glass is used for oven doors, which are designed to withstand extremely high temperatures. Drilled, silk-screened, and tempered glass is used to make stove tops and control panels in order to give high levels of thermal and mechanical safety as well as a beautiful appearance. In order to withstand shocks and prevent spills, refrigerators have shelves made of silk-screened, tempered, edged, and clipped glass. Dishwashers, washers, and dryers all have tempered glass on their drums and panels. Anti-reflective glass reduces the glare that reflects off of televisions, computer screens, glass cases, and other electronic displays. Photocopiers, scanners, and fax machines all need highly transparent glass sheets to help with document imaging. Furniture It is not affected by moisture and has a good resistance to wear and scratches, glass is extremely durable and requires little care. Additionally, it offers furniture designers distinct stylistic choices. Glass can be used to construct or be a component of the majority of home furnishings, including coffee and dining tables, bookcases and shelves, TV units, media storage, office furniture, lighting, aquariums, and other accessories. Glass furniture is particularly well-suited for settings where the amount of light needs to be maximized because it transmits and reflects light rather than absorbing it. It also gives off a vivid, bright appearance, which enhances both the actual and perceived illumination in an area. Radiation Protection Radiation protection is guided by three ideas: time, distance, and shielding. For a variety of radiation types, glass works well as a radiation shielding medium. In order to safeguard the operators, leaded glass is widely used in X-ray facilities. PET-scan (positron emission tomography) equipment also uses radiation-protective glass. Additionally, viewing windows for nuclear power stations are made of special glass that is made to protect against radioactive radiation. In the nuclear business, glass is used for radiation-shielding windows in the form of large blocks, some of which can weigh more than 4 tones. To stop radiation-induced browning, cerium oxide can be added to lead and non-lead-containing glasses. Indian Market The Indian flat glass industry is anticipated to reach a value of over $3 billion in 2021. Between 2022 and 2027, the market is projected to expand at a CAGR of roughly 7.9 percent. A rise in the global building and automotive industries is anticipated to cause a surge in the flat glass market in the ensuing years. The demand for flat glass used in solar applications would also increase as government funding on renewable energy sources increased. A significant expansion in the construction industry is predicted to accelerate market revenue growth in the near future. The rise of India's flat glass market is being aided by rapid urbanization and a thriving industrial sector. Additional factors boosting overall sales include the expanding usage of flat glass across a range of end users, including the construction and automobile industries. Top producers are also spending money on research and development (R&D) in order to make and market superior flat glass. The country's market is also growing as a result of rising corporate sector demand and developing infrastructure initiatives. The government's rising promotion of the construction of green buildings is also helping the market for flat glass. Global Market The market for flat glass was valued at USD 273.43 billion in 2021, and it is expected to grow at a CAGR of 4.3 percent from 2022 to 2030. The increase in solar energy installations worldwide and the use of glass architecture in both residential and non-residential buildings are expected to propel market growth over the course of the forecast period. Due to causes such the depletion of renewable resources, government regulations, growing environmental concerns, decreased installation costs for solar energy systems, advancements in technology, and rising electricity consumption, and the business is growing. Industry Major Market Players: • AGC Inc. • Saint-Gobain • NSG Group • Guardian Industries • ?i?ecam Group • Taiwan Industry Glass Corporation • Fuyao Glass Industry Group • Vitro, S.A.B. De CV • Central Glass • CSG Holdings Co. Ltd. • Other key players
Plant capacity: 4000 Sq.Mtrs. per dayPlant & machinery: 140 Cr
Working capital: -T.C.I: Cost of Project:187 Cr
Return: 24.00%Break even: 30.00%
Add to Inquiry Add to Inquiry Basket

ZINC INGOTS Manufacturing Business Plan

Zinc is an element in chemistry. Zinc is a slightly brittle metal at room temperature that turns silvery-grey when its oxidation is removed. It is the first element in group 12 of the periodic table (IIB). A single normal oxidation state (+2) and similar-sized Zn2+ and Mg2+ ions are just two of the chemical similarities between zinc and magnesium. After iron, aluminum, and copper, zinc is the fourth most used metal with an annual production of about 13 million tones. The largest producer of zinc worldwide is Nyrstar, which was formed through the merger of the Australian OZ Minerals and the Belgian Umicore. Applications and Uses Over 70% of the world's zinc production comes from mining, with the other 30% coming from secondary zinc recycling. Zinc that is 99.995 percent pure for commercial use is known as Special High Grade, or SHG for short. 95 percent of fresh zinc is recovered globally from sulfidic ore deposits, where sphalerite (ZnS) is almost always linked with the sulphides of copper, lead, and iron. Despite the fact that there are many zinc mines worldwide, the three largest are located in China, Australia, and Peru. Galvanizing: Steel objects are coated with zinc during the galvanizing process to make them corrosion-resistant. Galvanized steel is used to make a variety of items, including automobiles, structures, appliances for the home, and furniture. Iron Oxide: Zinc oxide, a zinc compound, is used to vulcanize many different products, such as paint, ceramics, and rubber. Die Castings: Zinc die cast alloy is used in several electronic components, hardware components, electrical equipment, etc. Alloys: A zinc and copper alloy is called brass. Industries: Furniture, chemicals, rubber, automotive, and batteries are just a few of the industrial sectors that use the pure, incredibly malleable, high-strength zinc ingots. Die castings made of zinc are used in many aspects of daily life, including construction and furniture fixtures and automobile parts. To produce cast goods in any quantity and size economically, there are several casting techniques accessible. Additional advantages of zinc die casting over other production methods include dimensional stability, precise casting tolerances, moderate casting temperatures, superior casting fluidity, reduced machining, thermal and electrical conductivity, faster production rates, extended tool life, and suitability for coating. Benefits EAF dust is a fine, dust-like material. This poses a problem when processing in a kiln since material fines become entrained in the process gas flow and eventually leave the kiln with the off-gases, rendering the process highly inefficient and pointless. Pelletizing the particles increases their size and prevents entrainment in the process gas. Global Market Zinc prices increased by 50% from May 2020 to May 2021, from $1,975 per metric tonne to $2,965 per metric tonne. The increase occurred after a two-year, 45 percent decline from the $3,500 peak reached in 2018. The price is currently 11.5 percent over the 5-year moving average. In 2022, the average spot price for zinc will drop from $2,700/t at the end of 2021 to $2,400/t, according to the World Bank's commodities outlook report. After then, a stage of steady expansion will start. In contrast, the IMF's estimate predicted a growth from $2,828/t at the end of 2021 to $2,859 in 2022. IMF experts predict a steady, progressive decline throughout the succeeding term. They anticipate a decrease in price to by 2026, they expect the cost to fall to $2,818/t. IISA (Industry Innovation and Science Australia) predicts a decline in the spot price of zinc from $2,686 at the end of 2021 to $2,362 in 2022, followed by a modest climb through 2026, which is more in line with World Bank forecasts. Production is expected to increase because to an expected 3.2% increase in Chinese output as well as additional increases in Italy, India, Japan, Peru, and the United States. The demand for refined zinc in Europe is anticipated to climb by 8.5% as a result of increases in France, Germany, Italy, Norway, Russia, and the United Kingdom. Usage will only rise by 2.8 percent, though. In the US, the demand for refined zinc is expected to increase this year, In the US, India, Brazil, Japan, Taiwan, Thailand, and Turkey, there is expected to be an increase in refined zinc demand this year. Industry Major Market Players: • Roto Metals • Pushpa International • Exporters India • Hindustan Zinc • Nyrstar • Industrial Metal Supply Company • Advameg Inc • Phoenix Industries Ltd. • Siyaram Impex Pvt. Ltd. • Shree Metal Industries • Focus Technology Co., Ltd. • C. Kundu and Sons
Plant capacity: 6 MT Per DayPlant & machinery: 45 Lakhs
Working capital: -T.C.I: Cost of Project:525 Lakhs
Return: 28.00%Break even: 53.00%
Add to Inquiry Add to Inquiry Basket

Setting Up Medical College With Hospital

In the context of health care, a hospital is an establishment that offers preventive, curative/ameliorative, palliative, or rehabilitative treatments. The definition given by the WHO, on the other hand, is quite inclusive and detailed and reads as follows: "an integral part of the medical and social organization whose mission is to provide for the population complete health care, both curative and preventive; and whose outpatient services reach out to the family in its home environment." The hospital is a center for bio-social research and for the education of medical specialists. A hospital is made to handle a range of ailments in patients. Doctors help the whole country by treating diseases that rob individuals of their health and cause them to suffer using medication and other treatments. Normal connections between educational institutions include colleges and hospitals. Hospitals offer O.P.D. and admittance services for the critically ill, terribly hurt, severely burned, and pregnant, victims, etc. Due to the growing incompetence of hospital doctors and their overcrowding, private hospitals were given a chance to succeed. Many private hospitals began to appear, offering comprehensive ECG, X-Ray, laboratory, 24-hour emergency, and admission services for ill individuals, seriously injured people, and pregnant women. Due to their belief that a person's life had a high price and that medical expenditures could be ignored, middle class and upper class families started favoring these private hospitals and nursing homes. A private hospital can provide care for anything from a minor illness to a significant surgical procedure. The amenities that can be found in a hospital are actually not constrained. However, the majority of private hospitals are furnished with the most advanced technology. In a hospital, it is essential to have surgeons, physicians, E.N.T. specialists, pediatric specialists, eye surgeons, and psychologists. Uses and Application 1. The applicant wants to pursue a career in medicine. 2. The applicant is the legal owner and occupier of the relevant land parcel needed by the Indian Medical Council to build the proposed medical college. 3. The applicant has a certificate of essentiality from the relevant State Government or Union Territory Administration stating that it is desirable and practical to have the proposed medical college at the proposed location and that there is sufficient clinical material available in accordance with Medical Council of India requirements. 4. The candidate has obtained approval from a renowned university to connect with the intended medical college. 5. The applicant, who resides adjacent to the proposed medical college, must own and run a hospital with at least 300 beds, the necessary infrastructure, and the ability to function as an educational facility in accordance with Indian Medical Council guidelines. 6. That the applicant has a realistic and time-bound plan to set up the proposed medical college, including the infrastructure facilities required by the Medical Council of India, adequate hostel facilities for boys and girls, and commensurate with the proposed student intake, in order to complete the medical college within four years of the date of grant or permission. 7. That the medical college would only allow students to enroll after receiving formal approval from the Central Government and verification from the Indian Medical Council that the facilities are suitable for starting M.B.B.S. 8. That the applicant has a realistic expansion plan that includes a timeline that complies with the requirements of the Medical Council of India by adding more beds and infrastructure amenities. 9. The applicant has the organizational and financial know-how necessary to establish and run the proposed medical college and its ancillary facilities, including a teaching hospital. 10. That the applicant offers the Medical Council of India two performance bank guarantees: one for a sum of Rs. 100 lakhs (for 50 annual admissions), Rs. 150 lakhs (for 100 admissions), and Rs. 200 lakhs (for 150 annual admissions) and the second for a sum of Rs. 350 lakhs (for 500 beds), Rs. 500 lakhs (for 700 beds), and Rs. 750 lakhs (for 1000 beds) for the establishment of the medical college and its infrastructural facilities. Indian Market The two primary parts of the Indian healthcare delivery system are the public and private sectors. The government's public healthcare system focuses on providing primary healthcare centres (PHCs) in rural areas, with a few secondary and tertiary care facilities in big cities. With a focus on metropolises, tier I cities, and tier II cities, the majority of secondary, tertiary, and quaternary care facilities are administered by the private sector. Currently estimated to be worth over $100 billion, the Indian healthcare sector as a whole is expected to expand to US$ 280 billion by 2022, indicating a Compound Annual Growth Rate (CAGR) of 6.0%. 22.9 percent CAGR for annual growth. Healthcare delivery, which includes prescription drugs, hospitals, nursing homes, and diagnostic centers, accounts for 65% of the market. The market for healthcare information technology (IT), which is currently worth US$ 1 billion, is expected to have grown by a ratio of 1.5 by 2022. According to a prediction by Deloitte Touché Tohmatsu India, the Indian healthcare sector, which is presently estimated to be worth roughly $100 billion USD, will increase at a CAGR of 23% to US$ 280 billion USD by 2022. There is a big chance to improve healthcare services because the proportion of GDP spent on healthcare is increasing. Rural areas, where more than 70% of Indians reside, are anticipated to grow in importance as potential markets. India will require an additional 600,000 to 700,000 beds over the next five to six years, with a potential investment potential of $25 to $30 billion. As a result of this need for cash, more transactions are likely to occur in the healthcare industry in the near future. From $5 to $15 million in the past, private equity funds now invest an average of $20 to $30 million in healthcare chains. A total of 3,598 hospitals and 25,723 dispensaries across the country offer Ayurveda, Yoga & Naturopathy, Umami, Siddha, and Homoeopathy (AYUSH) care, ensuring that the general public has access to alternative medicine and therapy. An estimated 230,000 people will travel to India each year for $3 billion in medical tourism. The number of people travelling to India for medical care is expected to triple over the following four years, and by 2018, the nation's medical tourism industry is expected to generate US$ 6 billion. As more hospitals receive accreditation and recognition and as more individuals become aware of the need to raise their quality to meet international standards, Kerala wants to become India's healthcare hub within the next five years. • The sector is expected to be valued US$ 160 billion by 2017 and US$ 280-390 billion by 2022, respectively. • In April 2021, Tata Digital invested US$13.45 million (about Rs. 100 core) in the start-up 1mg, which offered prescription medications online and had begun the process of taking over management of the company. Industry Major Market Players: • Apollo Hospitals • TACT Academy for Clinical Training • Zimmer Institute • Olympus • Gundersen Health System • GE Healthcare • Medical Training College • A V P Research Foundation • Aakash Educational Services Ltd. • Adani Hospitals Mundra Pvt. Ltd. • Apple Hospitals & Research Institute Ltd. • Artemis Medical Institute & Hospitals Pvt. Ltd. • Asian Heart Institute & Research Centre Pvt. Ltd. • B P Poddar Hospital & Medical Research Pvt. Ltd. • Baby Memorial Hospital Ltd.
Plant capacity: 100 Students, 500 bedded HospitalPlant & machinery: 18 Cr
Working capital: -T.C.I: Cost of Project:123 Cr
Return: 22.00%Break even: 43.00%
Add to Inquiry Add to Inquiry Basket

Start Production Business of Rubber Granules from Waste Tyre

One of the most important chemical components is rubber, which is a polymer of butadiene. In today's technologically advanced world, it is widely used in many different fields. Rubber is used primarily in the production of tires for various types of automobiles, which is the industry that produces tires. Rubber is required as the primary component of rubber goods. Either natural rubber, which is typically cultivated on enormous plantations and has all the problems that monocultures have, or synthetic rubber, which is produced using crude oil. Both processes use a great deal of resources. At the end of the chain, the countryside is suddenly covered in mountains of discarded car tires. These garbage sites are now handled by recycled rubber and used tire facilities. Rubber from used tires does not easily biodegrade, not even after extensive processing in a landfill. Landfilling used tires causes soil and water contamination since the leftover tire rubber contains toxic and soluble components. Tire stockpiles act as a haven for various pests, and burning tires presents significant fire dangers. It is crucial to find an alternative to consumption or disposal of discarded rubber tires. Used tire rubber holds a lot of promise for uses in the construction sector. This rubbish usage would not only be economical but might also help to preserve the environment. Any material that is created by uniformly pulverising old tires or other rubber into granules and then eliminating any steel or other inert impurities like dust, glass, or rock is known as rubber. The primary raw materials utilized in the production of crumb rubber are tire buffing’s, a byproduct of tire retreading, and waste tire rubber. Scrap tire rubber is made up of three different types of tires: off-road tires, which account for 1% of units or 15% of the total weight of scrap tires, trucks, which account for 15% of units or 20% of the total weight of scrap tires, and passenger car tires, which account for about 84 % of units or roughly 65 % of the total weight of scrap tires. The final product yields for each of these tire types are influenced by the tire’s design, strength, and weight. 10–12 pounds of rubber crumbs can be produced by one passenger tire per year. Uses and Application Rubber may also be used in stadium flooring, brake pad factories, oil refineries, automobile industries, and brake pad factories. In cement factories, rubber is occasionally used as fuel. Four tires are equal to one barrel of fuel, and a tone of tires is equal to 700 kg of standard fuel. Numerous products, including shoes, tires, rubber connectors, oil seals, hoses, and related items, are produced in factories using rubber. Golf courses, aircraft pitches, basketball courts, and recreational fields; 10-20 mesh (0.85-2 mm): safety mats, gym mats, and other stadium floor mats. Rubber tiles, plastic track, grass sand, skin fragments, cottonseed meal, and leisure fields. Plastic insulating material, shock-proofing material, washers, recycled rubber, modified asphalt, fender, multipurpose mats, and stable mats are all examples of materials with a mesh size of 30 (0.6 mm). 80 mesh (0.18 mm) size rubber is available as reclaimed rubber, waterproof rolls, tire additives, sleepers, road humps, seals, buffers, pearl pads, rubber pistons, brake linings, and other rubber products. Rubber pavement blocks, cow mats, railroad crossings, detachable speed bumps, and gymnasium mats are a few examples of products created of rubber utilizing straightforward compression molding procedures. By removing the sulphur bonds that make up the molecular structure of recycled rubber, devulcanization is a method for restoring it without compromising its quality, appearance, or performance characteristics. This can be accomplished using a variety of techniques, including mechanical, thermal, ultrasonic, and even the use of microbes. Other Unrelated Uses - Many items, such as playground swings, door mats made of tire strips, handicrafts, and shoe bottoms, are the result of imaginative thinking. All around Thailand, there are trash containers made from used tires. Market Outlook: The rubber industry in India is growing significantly. The demand for rubber granules in India has increased from 5% to 8%. The product's range is appropriate. The USA is estimated to be the world's largest producer, with approximately 300 million waste tires generated year. However, China and India are progressively increasing the amount of rubbish tires as more new cars are sold. Every year, more than a billion tires are dumped in landfills throughout the world. An estimated 15 million tons of used tires are generated annually on a global scale. Debris is piled high and deposited in landfills, endangering the environment and human health. Appropriate recycling of used tires helps to address these problems by recovering resources and giving the general public job and financial possibilities. Each year, more than 1.6 billion new tires are produced, along with 1 billion tires that are thrown away. However, the recycling industry processed only 100 million tires annually. Tire recycling is difficult due to the tire's complicated design and numerous intricate processes that make it virtually indestructible. Leading tire recyclers are spending a lot of money, though, on state-of-the-art equipment and technology that might help recycle tires for a number of purposes while also preserving the environment. According to the most recent research, the demand for Rubber granules is anticipated to develop significantly between the next assessment periods of 2021 and 2031, at a rate of around 4.0 percent to 6.0 percent. Due to increased demand for a number of applications, such as playground surfaces, drain construction, road construction, the automotive industry, and others, the market is expected to expand at a healthy rate during the upcoming years. Industry Major Market Players: • Liberty Tire Services LLC • Lakin General • Entech Inc. • Emanuel Tire Co. • Tire Disposal & Recycling Inc. • Mac’s Tire Recyclers • Golden By-Products Inc • Champlin Tire Recycling • L&S Tire Co. • Global Rubber LLC • Manhantango Enterprises Inc. • RB Rubber Products • BAS Recycling Inc. • Rumpke Consolidated Cos. Inc • Global Tire Recycling of Sumter County Inc • reRubber LLC • Golden By-Products Inc. • Colt Inc. Scrap Tire Centers
Plant capacity: Rubber Granules:5 MT Per Day By Product Steel Wire:0.5 MT Per DayPlant & machinery: 60 Lakhs
Working capital: -T.C.I: Cost of Project:207 Lakhs
Return: 28.00%Break even: 60.00%
Add to Inquiry Add to Inquiry Basket

Medium Density Fiberboard (MDF) Manufacturing Business

Fiberboard (MDF) is a dry-formed panel product constructed from lignocellulosic fibers combined with a synthetic resin or other suitable binder. The panels are compressed using a hot press to achieve a density of 496 to 801 kilograms per cubic meter (kg/m3) (31 to 50 pounds per cubic foot [lb/ft3]). The entire interfiber bond is formed by a synthetic glue or other appropriate organic binder. Due to its smooth, tight edges, MDF can be machined and has a more even density throughout the board. Because it can be completed with a smooth surface and printed with a grain pattern, veneers or laminates are not necessary. Most of the heavier MDF panels used for furniture have a thickness of 1.27 to 1.91 centimeters (1/2 to 3/4 inch). Panels of medium density fiberboard that are thinner than 1.27 cm (1/2 in) are frequently used for siding. One of these is MDF, a product made of man-made wood similar to particleboard. Particleboard, which is merely a mixture of wood chunks and shavings bound together with resin, is a much less sophisticated material than MDF. To produce denser, stronger panels, finer materials can also be crushed more firmly. There are many benefits to turning wood into a fibrous material. It has absolutely no grain. According to this, MDF is remarkably stable and unaffected by changes in humidity. Additionally, the finer material creates a uniform, flat, smooth surface that is the best base for wood veneer and plastic laminate. MDF may be worked like any other sort of wood product as long as carbide cutters are used. MDF is often not polished or stained spontaneously. It is typically painted, covered in wood veneer, or laminated with plastic. MDF accepts paint well. MDF looks good after applying primer and several coats of paint, unlike particleboard or plywood where the surface grain is obvious. Uses and Application Due to the high level of consistency across MDF, cut edges will be smooth and free of voids and splinters. Because the edges are smooth, decorative edges can be made with a router. MDF's uniformity and smoothness make it simple to cut intricate designs with a scroll saw, band saw, or jigsaw. These designs might include scrolled or scalloped designs. MDF has an extremely flat surface, which makes it a fantastic surface for painting. Advantage Store fixtures, office and residential furniture, paneling, doors, jambs, millwork, edge shaping and machining, embossing, laminate flooring, laminating and finishing, kitchen cabinets Market Outlook The MDF market in India has grown at a CAGR of 5-8 percent during the preceding five years, and it is estimated to be worth H35 billion. The Central Government's decision to refuse new permits for the manufacturing of plywood has increased the gap between supply and demand. This is a positive development for the MDF market since it will increase the adoption of engineered panel materials. The primary raw material used to create MDF and particle boards is wood. The FAO estimates that the Indian wood-based panel industry's demand for wood has increased at a CAGR of 5.5% over the past 10 years and will continue to grow at a CAGR of 5% through 2020. Wood prices have been continuously rising over the past 10 years as a result of growing demand from the wood and paper sectors as well as strict Central Government forest preservation rules. Rising wood prices could have an impact on the company's profitability because it has no long-term agreements for the supply of raw materials. The demand for pre-assembled furniture consisting of engineered panels like MDF is increasing due to rapid urbanization. Compared to the global average of 80%, MDF penetration in India is quite low at only 7% of the total wood substrate market. The entry of significant, specialized players to the market, growing uses, and expanding awareness have all contributed to the MDF sector's 20 percent CAGR growth over the preceding five years. Given the high cost of plywood and the rising demand for MDF, we predict that the MDF market will rise at a CAGR of 15-20% over the next few years. Industry Major Market Players: • Arauco (Chile) • Centuryply (India) • Daiken Corporation (Japan) • Duratex (Brazil) • Fantoni Spa (Italy) • Greenpanel (India) • M. Kaindl KG (Austria) • Roseburg Forest Products (U.S.) • Rushil Décor (India) • Swiss Krono Group (Switzerland) • Uniboard (Canada) • Unilin (Belgium) • VRG Dongwha (Vietnam) • West Fraser Timber Co. Ltd. (Canada) • Weyerhaeuser (U.S.) • Kronospan (Switzerland) • Egger (Austria)
Plant capacity: 100 CBM per DayPlant & machinery: 18 Cr
Working capital: -T.C.I: Cost of Project:31 Cr
Return: 25.00%Break even: 47.00%
Add to Inquiry Add to Inquiry Basket

Manufacturing of Aluminum Ingots From Aluminum Scrap

Aluminum ingots are exceptionally large casting products in both size and shape when compared to blooms, billets, and slabs. Although an ingot's cross section is frequently rectangular or square, it need not remain the same all the way along the object's length. (The cross section of the ingot may change.) Aluminum alloy ingots like LM-2, LM-4, and LM-6, which are often used in gravity and sand casting, as well as pressure die casting alloys like LM-13, LM-14, and LM-24, ADC-12, and ALSI-132, are also made in accordance with Indian and international standards. 7 percent of the earth's crust is made up of aluminum, a thin, silver-white metallic element. It weighs almost a third less per cubic meter than steel (7480–8000 Kg/cubic meter) or copper (8930 Kg/cubic meter). Aluminum is malleable, ductile, and easy to cast, and it has good corrosion resistance and durability. When coupled with oxygen, it primarily exists as alumina and is mined as bauxite ore. India is home to around 10% of the world's bauxite reserves, which is used by a growing aluminum sector. The growth in domestic demand is expected to be between 8 and 10 percent. By 2020, India is expected to have installed aluminum production capacity of 1.7 to 2 million tones yearly. India produces about 3% of the aluminum manufactured worldwide. In India's largely centralized aluminum industry, there are just five main units. Uses • Sand and cold environments are suited for castings for maritime applications that require the highest level of corrosion protection. • Applied where ductility or corrosion resistance are required; appropriate for large, intricate, and thin-walled castings in all styles of molds. • Mainly used for castings in sand and cold conditions that need to be robust and shock-resistant. • Used in all applications, especially low pressure die casting that calls for LM 6's improved tensile strength following heat treatment. Useful primarily in applications requiring pistons and those with higher thermal stresses. • Requires specific foundry methods and heat treatment. This alloy is capable of withstanding greater loads and temperatures. It has strong wear resistance and machinability properties. • It is appropriate for use in moderately complex sand and chill castings where good mechanical properties are desired. Need thermal treatment. • Used primarily in pressure die casting. LM 6-like in appearance but tougher and easier to machine. • As a result of the smelting process, various grades of aluminum ingots are produced, which are then used to create castings for the electrical and automotive industries. Market Outlook It is anticipated that the annual increase in demand for aluminum will range between 4 and 6 percent. The demand for the metal is predicted to rise as conditions for user industries such as power, infrastructure, and transportation, which are all in motion, improve. By the end of 2019–20, demand is predicted to have increased from around 1.6 million units in 2013–14 to close to 2.4 million units, and then to over 3.4 million units by 2024–25. • It is anticipated that India's demand for aluminum will rise by 17–18% each year as the building, construction, transportation, and packaging sectors continue to grow. • From an anticipated 3.4 million tones in FY17, India's consumption of aluminum is predicted to rise to 5.3 million tons by 2020. • Aluminum is a key material used in the electrical industry's wide range of products, including the manufacture of aero planes and packaging. The two sectors of transportation and energy make for more than half of the total off take. India's primary consumer industries are power, transportation, durable goods, packaging, and construction. Power consumes the most of it, making up about 44% of the total, followed by infrastructure (17%) and transportation (6%). (3 percent). (Roughly 10 to 12 percent). Some of the main factors that are expected to continue to propel the growth of the global market include rapid industrialization in both developed and developing countries, an increase in construction and reconstruction activities worldwide, and widespread use of aluminum ingots in the construction sector for manufacturing windows, weatherproofing doors, screens, etc. An increasing focus on technological developments in the packaging industry and an increase in the usage of aluminum ingots in the manufacturing of cans and aluminum foil due to their light weight and simplicity of molding are two additional factors fueling the growth of the global market for aluminum ingots. Industry Major Market Players: • Aravali Infrapower Ltd. • Baheti Metal & Ferro Alloys Ltd. • Bothra Metals & Alloys Ltd. • Indo Alusys Inds. Ltd. • Namo Alloys Pvt. Ltd. • AlcoaInc • Rio Tinto Group • Aluminum Corporation of China • United Company RUSAL • Norsk Hydro • Dubai Aluminium Company • SPIC • BHP Billiton • Xinfa Group • China Zhongwang
Plant capacity: Aluminium Alloy Ingots:12 MT per day Aluminium Scrap:0.20 MT per dayPlant & machinery: 7 Cr
Working capital: -T.C.I: Cost of Project:11 Cr
Return: 26.00%Break even: 53.00%
Add to Inquiry Add to Inquiry Basket

Aluminum Foil (Pharma Grade) Manufacturing Business

Aluminum foil is a thin metal sheet. As a result, it can act as a full barrier to bacteria, gases, odours, moisture, mould, and other contaminants. Aluminum's high reflectivity allows efficient heat insulation, but its opacity is essential for preventing the deterioration of foods and beverages that are light-sensitive. It is used in packaging and non-packaging applications. It takes either continuous cold casting and rolling to make aluminium foil, or it includes rolling sheet ingots made of molten aluminium, then rolling them again to the required thickness on sheet and foil rolling mills. To maintain a constant thickness when producing aluminium foil, beta radiation is delivered through the foil to a sensor on the opposite side. If the intensity becomes too much, the rollers change, increasing the thickness. If the intensities fall too low and the foil thickens, the rollers raise their pressure, making the foil thinner. Lubrication is required during the rolling stages to stop the foil surface from forming a herringbone pattern. These lubricants are applied to the foil surface before it passes through the mill rolls. Although foil used for food packaging must be lubricated with oils appropriate for food contact, kerosene-based lubricants are routinely utilized. Due to its effective barrier properties against oxygen vapour and moisture, aluminium foil is used for pharmaceutical packaging. This makes it perfect for establishing an inert environment for the preservation of hygroscopic medicine tablets and capsules. Uses • Medication tablets, tea and coffee in bulk and unitized packaging, prepared foods, and bakery goods. • Wine; Frozen meat and seafood; Milk bottle caps; Lube Butter, margarine, powdered milk, household wraps, confections, biscuits, photography film, oils, greases, and cigarettes. Because it totally keeps out odours, flavours, moisture, bacteria, light, and oxygen, which can cause lipids to oxidise or go rancid, aluminium foil is frequently used in food and pharmaceutical packaging. Aluminium foil is used to construct long-lasting packets (also known as aseptic packaging) for beverages and dairy products, enabling storage without refrigeration. Aluminium foil laminates are also used to package a number of other oxygen or moisture sensitive foods, tobacco, and other products in the form of pouches, sachets, tubes, as well as tamper-evident closures. Aluminum Foil Market • Production optimization over the years, foil-rolling systems that are currently available can produce widths of up to 2150 mm and as thin as 0.006 mm at rolling rates of 2500 metres per minute. • A natural way to conserve energy would be to collect and purify the CO2 produced during the electrolysis process for later usage. By 2022, 6.4MMT of aluminium will be produced, predict industry specialists who have studied the market for aluminium foil. • Asia Pacific (APAC), the largest producer of aluminium foils, has a market share of 64% in 2017. Europe, the Middle East, and Africa (EMEA) accounted for 20% of production, followed by North America (13%), and Latin America (3%). • Between 2017 and 2022, the APAC aluminium foil market is expected to grow at the fastest rate, between 7.5 and 8 percent. Global Aluminium Foil Market Size In response to consumer preferences for straightforward and lightweight packaging, suppliers have developed innovative aluminium foil packaging solutions for the organized retail and packaged food industries. It appears that the packaging of dairy products using paper and aluminium foil will expand in the future. The food and beverage industry is the primary end-use for aluminium foil, making up around 30% of the market. • The global consumption of rolled foil may increase by 5% CAGR between 2019 and 2024, with the transportation industry representing the largest market. • The use of packaging might surpass $27 Mn by 2022, according to market research on aluminium foil, as a result of increased flexible packaging usage and rising packaged food demand. • Pharmaceutical packaging, such the strip-pack in tablets, is driving up demand for aluminium foils, also referred to as pharma foils. Industry Major Market Players: • ACM Carcano • Amcor • Assan Aluminyum • Ess Dee Aluminium • Eurofoil • Hindalco Industries Limited • Huawei Aluminium • Laminazione Sottile • Shanghai Metal Corporation • UACJ Foil Corporation • Xiamen Xiashun Aluminium Foil Co., Ltd. • Zhejiang Junma Aluminum Industry
Plant capacity: 12 MT per dayPlant & machinery: 15 Cr
Working capital: -T.C.I: Cost of Project:22 Cr
Return: 27.00%Break even: 47.00%
Add to Inquiry Add to Inquiry Basket

Business Plan for Production of Surgical Products (Surgical Absorbable Suture, Non Absorbable Suture, Surgical Mesh, Bone Wax, C Section Kits, Surgical Glue & Surgical Stapling)

You can save money by selecting surgical supplies carefully and avoiding buying inferior equipment. An essential part of any hospital or doctor's office is surgical supplies. This book can teach you how to choose the best surgical supplies for your needs and why buying surgical equipment should be considered an investment rather than a one-time purchase. Whether you're experienced in this line of work or just want to refresh your memory, this tool can help you streamline your operations. Surgical devices, often known as surgical gadgets, are instruments used during surgery to hasten healing and reduce the amount of time needed for recovery. A number of variables, such as your unique medical state, the sort of surgery you will be having, and more, will determine the ideal surgical product for you. This article will look at all of the many surgical products on the market today and explain how they are used in surgery to help you prepare for your own procedure. Suture for Surgery An instrument used in medicine to hold human tissues together and roughly define the boundaries of wounds after surgery or injury is a surgical suture, often known as a stitch or stitches. For application, a needle with a threaded attachment is typically used. The many suture kinds are determined by the shape, size, and characteristics of the needles as well as the kind of thread utilized. When selecting a surgical suture, one should examine the characteristics and location of the wound or the specific biological tissues that need to be approximated. Biological Sutures Body tissue that requires more than two months of tensile strength shouldn't be stitched with absorbable sutures since they either degenerate through hydrolysis or proteolysis. It is often given intravenously during surgery or in patients who are not likely to return for suture removal to skip future treatments. Sutures That Don't Absorb These sutures don't deteriorate over time and keep their superior tensile strength. They are appropriate for tissues that have been subjected to strong mechanical or shear pressures (tendons, certain skin location). They also give the operator more usability because they require less thread memory. Dental Mesh During surgery, a loosely woven material known as surgical mesh is used to either permanently or temporarily support organs or other tissues. Surgical mesh, which is comprised of both inorganic and biological components, is used in a variety of procedures. Surgery can be used for reconstructive operations such pelvic organ prolapse, while being most usually used for hernia repair. Wax Bone Numerous blood and bone marrow channels can be found in bone. As the spine and sternum are highly vascular bones that are surgically incised or damaged, osseous haemorrhage can be a difficult condition to manage. For the purposes of maintaining bone hemostasis during orthopaedic, thoracic, and neurological procedures, medical-grade sterile bone wax is a crucial component. C section kit A caesarean section, also referred to as a C-section, is a type of surgical procedure where an abdominal incision is made to deliver the baby. Your doctor might suggest this operation if particular pregnancy problems arise, the expecting mother's or the fetus's health is in danger, or if labour doesn't progress as expected. Medical Adhesive Tissue-to-tissue or tissue-to-non-tissue surface adhesion can occur as a result of in situ polymerization when an adhesive contains certain properties. Until newly formed tissue is strong enough to support it mechanically, tissue adhesives are often employed to hold two sides of tissues together and speed up wound healing. Medical Staples Sutures can be replaced using medical devices like surgical staplers and staples. They can quickly fix large wounds or injuries and are less painful for patients than stitches. They are widely used in operations with minimum incision. They can be used to seal wounds in areas where skin is close to bone during operations to remove organs or rejoin sections of internal organs. Market Outlook: Surgical sutures and staplers dominated the market in 2021, accounting for a revenue share of more than 40.0 percent. This may be due to the widespread use and high acceptance rate of sutures and staplers in wound closure procedures. The market for staplers is expected to expand because of the benefits that staplers have over sutures. This includes a speedy wound healing process and a lower risk of infection. Depending on the product, the market is segmented into electrosurgical equipment, handheld surgical devices, and surgical sutures and staplers. The estimated size of the global market for surgical equipment in 2021 was USD 14.34 billion, and from 2022 to 2030, it is projected to grow at a CAGR of 9.3%. Ageing populations, a growth in the incidence of lifestyle problems that eventually necessitate surgery, growing healthcare costs, and huge unmet surgical requirements are the main drivers of the industry. In addition to these elements, it is anticipated that the market will expand over the course of the forecast period as a result of growing technical developments in minimally invasive procedures, shorter hospital stays following surgery, and an increase in the number of ambulatory surgical facilities. Industry Major Market Players: • B. Braun Melsungen Ag • Smith & Nephew plc • Zimmer Biomet Holdings Inc. • Stryker Corporation • Alcon Laboratories Inc. • Aspen Surgical Products, Inc. • Medtronic Inc. • Ethicon Inc. • Becton, Dickinson and Company
Plant capacity: Surgical Absorbable Suture 5,000 Pcs. Per Day Non Absorbable Suture 5,000 Pcs. Per Day Surgical Mesh 5,000 Pcs. Per Day Bone Wax 5,000 Pcs. Per Day C Section Kits 1,000 Pcs. Per Day Surgical Glue 5,000 Pcs. Per Day Surgica Stapling 2,000 Pcs. Per DayPlant & machinery: 69 Lakh
Working capital: -T.C.I: Cost of Project:18 Cr
Return: 31.00%Break even: 56.00%
Add to Inquiry Add to Inquiry Basket

Set up Sugar Plant

Sugar is a sweet, crystalline substance manufactured from sugar cane and sugar beet. There are numerous uses for it in the food and non-food industries. In the food industry, sugar serves a variety of crucial functions in addition to giving food a sweet taste. It preserves food and inhibits bacterial growth. It is also used to prevent the development of large ice crystals in frozen dishes like ice cream. Additionally, sugar encourages fermentation in products containing yeast. Additionally, it preserves the freshness and moisture of baked goods. Uses & Applications Sugar has several applications in food technology, its sweet flavour serves as the primary basis for its use. The main purposes of added sugar in food are bulking, flavouring, texture modification, preservative, sweetener, and substrate for fermentation. The human body uses sugars and starches from carbohydrates to fuel the rest of the body's cells and provide the brain with glucose. With the introduction of new regulatory restrictions and revisions to current ones, farmers and millers have a higher chance of stepping up their efforts toward cane sugar production and processing. An estimated 12 percent of the rural population in the nine states of Punjab, Uttar Pradesh, Maharashtra, Andhra Pradesh, Bihar, Gujarat, Haryana, and Tamil Nadu receives assistance from the sugar industry through direct or indirect employment. The amount of land planted with cane may increase, and the rains in the world's largest consumer may increase yields, bringing India's production of sugarcane back up from a seven-year low. The market for Indian cane sugar has become fragmented as a result of the presence of important local and regional businesses. The corporations place a high emphasis on mergers, expansions, acquisitions, and alliances of the companies as strategic approaches to boost their brand visibility among customers. Indian Cane Sugar Market A CAGR of 4.3 percent is anticipated for the Indian cane sugar market over the projection period (2020-2025). A peak in sugar output in India is projected during the forecast period as a result of government policies that are favourable and growing planting areas. The majority of the country's sugarcane is produced in nine Indian states: Punjab, Uttar Pradesh, Maharashtra, Andhra Pradesh, Bihar, Gujarat, Haryana, Karnataka, and Tamil Nadu. Around 12 percent of the rural population in these nine states is supported by the sugar industry through direct or indirect employment. Given that India is one of the world's major agricultural countries and that sugar demand there is on the rise, India is an ideal area for market expansion. Global Sugar Market The global sugar market has a volume of 185 million Tons in 2021. The market is predicted to increase at a CAGR of 1.8 percent from 2022 to 2027, reaching 206.6 million Tons. Any decreases brought on by changes in the economy are largely not felt by the global food and beverage industry. As a result, the sector has continually expanded over the past few years. Sugar consumption is currently heavily influenced by the food and beverage sector, and this sector is expected to have a positive impact on the sugar industry. Also anticipated is the continuation of long-term market expansion. Sugar has a number of applications in the healthcare and cosmetics industries. Because of its exfoliating properties, sugar is used to manufacture scrubs in the cosmetics business. In the pharmaceutical industry, it is used to make antibiotics and cough syrups. Industry Major Market Players: • A B Sugars Ltd. • Aakriti Sugar Mills Pvt. Ltd. • Ab Sugars Ltd. • Ag-Vet Marketing Ltd. • Bannari Amman Sugars Ltd. • Baramati Agro Ltd. • Suedzucker AG • Tereos • Cosan. • Mitr Phol Sugar Corporation., Ltd. • Associated British Foods • Nordzucker AG • Biosev (Louis-Dreyfus) • Wilmar International Limited • Thai Roong Ruang Group
Plant capacity: Sugar:100 MT Per Day Molasses(by Product):44.8 MT Per Day Baggase (by Product):342.1 MT Per Day Paste Mud (by Product):30.3MT Per DayPlant & machinery: 149 Cr
Working capital: -T.C.I: Cost of Project:243 Cr
Return: 1.00%Break even: 57.00%
Add to Inquiry Add to Inquiry Basket

Nicotine Sulphate from Tobacco Leaves Production Business

Tobacco is cultivated with human assistance, with the leaf being the most valuable part of the plant. Almost every continent can support the growth of tobacco, but the major producers are the United States, China, India, and Brazil. During the manufacturing of tobacco, a lot of waste materials, including rejected leaves, lamina nidrib fragments that are broken, stalks, and stems, collect. Despite this, these products can be quite useful. Nicotine and tobacco seeds are by far the two main by-products produced from tobacco waste. It is common practise to employ nicotine sulphate to control significant agricultural insect pests. It is created using liquors and used tobacco from businesses that make chewing and smoking tobacco. The used tobacco is steam distilled after being macerated with water and lime. The distillate is first neutralised with sulphuric acid before being concentrated. The primary uses of tobacco are in snuff, cigars, cigarettes, and chewing tobacco. Two other tobacco-based products are beedi and hookah, with 90% of their production coming from India. Uses and Application Pure nicotine that complies with the USP and EP pharmacopeas is produced using nicotine sulphate. Nicotine USP/EP is used in huge quantities to create nicotine salts, complexes, and electronic cigarettes. Nicotine sulphate 40 percent is used to kill aphids, bugs, worms, leafhoppers, and other similar sucking insects that devour and destroy fruit, vegetables, crops, and even flowers. It also effectively combats lice, ticks, and mites, all of which are harmful to animals. Tobacco in Indian Economy Tobacco is one of the most significant commercial agricultural crops in the world. It is a short-lived, vigorous crop that can grow in soils where other crops cannot and can resist droughts. In India, tobacco is grown on 0.45 million hectares (0.27 percent of the net cultivated area), producing 750 million kilogrammes of leaf. India is the third- and fourth-largest exporter in the world behind China and Brazil, respectively. A 0.20 million hectare area is used to generate around 300 million kg of flue-cured Virginia (FCV) tobacco, whereas a 0.25 million hectare area is used to produce about 450 million kg of non-FCV tobacco. 10% of the world's tobacco is produced in India, whereas 9% of it is produced worldwide. Positive Features of Indian tobacco India's tobacco has lower levels of heavy metals, very low levels of Tobacco Specific Nitrosamines (TSNAs), and less pesticide residue than tobacco produced in other tobacco-producing countries across the world. India, which has a diversity of agro-climatic conditions, can produce a wide array of tobacco products, from tasty leaf to colourful, neutral filler, to fulfil the needs of a wide range of customers around the world. Industry Major Market Players: • Jiatian Biotech • He Nuo Biotech • BGP Group • Tianze Biological • Guanghua Bio • Alchem International Pvt. Ltd. • B G P Healthcare Pvt. Ltd. • Cipla Ltd. • Punjab Chemicals & Crop Protection Ltd.
Plant capacity: Nicotine Sulphate:3.6 MT Per Day Waste Tobacco:28.3MT Per DayPlant & machinery: 161 Lakhs
Working capital: -T.C.I: Cost of Project:1416 Lakhs
Return: 28.00%Break even: 55.00%
Add to Inquiry Add to Inquiry Basket

Information
  • One Lac / Lakh / Lakhs is equivalent to one hundred thousand (100,000)
  • One Crore is equivalent to ten million (10,000,000)
  • T.C.I is Total Capital Investment
  • We can modify the project capacity and project cost as per your requirement.
  • We can also prepare project report on any subject as per your requirement.
  • Caution: The project's cost, capacity and return are subject to change without any notice. Future projects may have different values of project cost, capacity or return.

Add multiple items to inquiry
Select the items and then press Add to inquiry button

Page 268 of 300 | Total 2993 projects in this category
« Previous   Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 .... 268 299 300   Next »

About NIIR PROJECT CONSULTANCY SERVICES

Hide »

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

Our various services are: Detailed Project Report, Business Plan for Manufacturing Plant, Start-up Ideas, Business Ideas for Entrepreneurs, Start up Business Opportunities, entrepreneurship projects, Successful Business Plan, Industry Trends, Market Research, Manufacturing Process, Machinery, Raw Materials, project report, Cost and Revenue, Pre-feasibility study for Profitable Manufacturing Business, Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Business Opportunities, Investment Opportunities for Most Profitable Business in India, Manufacturing Business Ideas, Preparation of Project Profile, Pre-Investment and Pre-Feasibility Study, Market Research Study, Preparation of Techno-Economic Feasibility Report, Identification and Selection of Plant, Process, Equipment, General Guidance, Startup Help, Technical and Commercial Counseling for setting up new industrial project and Most Profitable Small Scale Business.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

^ Top