Naturally occurring polysaccharides from plant exudates have been in use from many decades in immense quantities. Natural gums are natural polymers, which mainly consists of carbohydrates sometimes with small amounts of proteins and minerals. Gum and its derivatives are widely used in various industries as per its needs. The appearance and properties of natural gums determine their commercial value and end use. Due to their extraordinary, unrivalled technological & functional properties gum is used in many industries. Gums not only modify viscosity and consistency, they also often attenuate odour, taste and flavour intensity.

Adhesive or sealant is a mixture in a liquid or semi-liquid state that is capable of holding materials together by surface attachment. Adhesives and sealants are used as a raw material for the manufacturing industry or for the service of different processing industries. Adhesives and sealants virtually touch every part of our lives. The adhesives and sealants are two chemically similar but functionally different groups of formulated products. There is no end in sight to the new materials, new formulation, and new uses to which adhesives and sealants will be put in the future.

Some of the fundamentals of the book are advantages of adhesive bonding, hybrids and coupling agents, adhesive films, designing polymers for adhesives, fundamentals of adhesion, designing polymers for adhesives, thermodynamics of adhesion, casein and mixed protein adhesives, lime-free casein adhesives, foil to paper laminating adhesives, casein and protein blend adhesives as wood adhesives, chemistry of protein blend adhesives, natural rubber adhesives, vulcanizing latex adhesives, solution adhesives from natural rubber, halogenated butyl rubber, butyl rubber and poly isobutylene lattices, polysulfide sealants and adhesives etc. This book covers a wide range of polymeric adhesives and sealants, gums along with their essential formularies, distinguished by applications and based on technology. The main areas covered in details are the basic fundamentals, properties, uses and applications, formulations and chemistry, methods of manufacturing and lastly testing methods. This book will be very resourceful to its readers who are just beginners in this field and also to upcoming entrepreneurs, engineers, existing industries, technologist, technical institution etc.

Contents

I INTRODUCTION TO ADHESIVES
ADVANTAGES OF ADHESIVE BONDING
HISTORY
TYPES OF ADHESIVES
Application and Setting
Origin

Author: NIIR Board
Format: Paperback
ISBN: 9788178330952
Code: NI8
Pages: 700
Price: Rs. 1,475.00 US$ 150.00
Publisher: Asia Pacific Business Press Inc.
Usually ships within 3 days
GLASS CHIPPING
SIZING AND COATING
PAPER
COMPOUNDED RUBBER
GASKET MANUFACTURING
MATCHES
METAL REFINING
OTHER APPLICATIONS FOR ANIMAL GLUE

I CASEIN AND MIXED PROTEIN ADHESIVES
Manufacture of Casein
Specifications and Typical Analyses for Casein
CHEMISTRY AND PHYSICAL PROPERTIES OF GLOBULAR PROTEIN
CHEMICAL PROPERTIES OF CASEIN
PHYSICAL PROPERTIES OF CASEIN
Other Viscosity Factors
LIME-FREE CASEIN ADHESIVES
Preparation of Casein Solutions, General
Preservatives
Preparation of an Alkaline Casein Solution
Additives for Casein Solutions
APPLICATIONS USING CASEIN SOLUTIONS AND ADHESIVES
Casein as a Protective Colloid
Paper Coatings
Foil-to-Paper Laminating Adhesives
Ice Water Lable Paste Adhesives
CASEIN AND PROTEIN BLEND GLUES AS WOOD ADHESIVES
Chemistry of Protein Blend Glues
Formulation and Chemistry of Casein-Lime Glues
Mixing Casein Glue
Additives for Casein and Protein Blend Glues
Uses of Casein Glues
Specifications Applying to Casein Glue
Viscosity and Pot Life
Certification of Fire Doors
Properties of Casein Glues
Durability of Casein Glues

I STARCH BASED ADHESIVES
MODIFICATION OF STARCHES
Fluidity Starches
Oxidized Starches
Dextrinization
Hydroxyethylisation
Cationic Starches
Amphoteric Starches
Miscellaneous Derivatives
EFFECT OF ADDITIVES
Sodium Hydroxide
Borax
Urea
Glycerol
Soluble Soaps
Urea-Formaldehyde Resin
Miscellaneous Additives
STARCH ADHESIVES
Jelly Gums
Other Liquid Formulations
Pastes
Borated Dextrins
White Dextrins
Canary Dextrins
British Gums
Waxy Starch Dextrins
Dextrin/Silicate Blends
Pregelatinized Starches
APPLICATION AREAS
Papermaking
Paper Coating
Corrugating
Bag Adhesives
Laminating Adhesives
Tube Winding
Corrugated Boxes
Gummed Tapes
Label and Envelope Adhesives
Paper Box
Textiles
Wall Covering Adhesives
Miscellaneous Uses
GOVERNMENTAL REGULATIONS: ADDITIVES

I NATURAL RUBBER ADHESIVES
INTRODUCTION
RAW MATERIALS
Natural Rubber Latex
Preservation
Dry Natural Rubber
Natural Rubber Grafted with Methyl Methacrylate (Heveaplus MG)
Depolymerized Rubber
Synthetic Polyisoprene
FORMULATION OF LATEX ADHESIVES
Quick-Grab Adhesive
Self-Adhesive Envelopes
Latex Pressure-Sensitive Adhesives
Tile Adhesives
Reseal Adhesives
Anchor Coat for Tufted Carpets
Other Nonvulcanizing Latex Adhesives
Vulcanizing Latex Adhesives
SOLUTION ADHESIVES FROM NATURAL RUBBER
Nonvulcanizing Adhesives
Vulcanizing Adhesives
Mastics, Asphaltics, and Sealants
GRAFTED COPOLYMER HEVEAPLUS MG FORMULATIONS
I BUTYL RUBBER AND POLYISOBUTYLENE
INTRODUCTION
BASIC PROPERTIES
Butyl Rubber
Polyisobutylene
Halogenated Butyl Rubber
Butyl Rubber and Polyisobutylene Latices
Modified Butyls
FORMULATING AND PROCESSING
Choice of Polymer
Pigments and Fillers
Tackifiers, Plasticizers, and Other Polymeric Additives
Curing Systems
Solvents and Solution Processing
Mixing and Processing Techniques and Guidelines
APPLICATIONS AND FORMULATIONS
Adhesives and Mastics
Sealants
Mixing
I NITRILE RUBBER ADHESIVES
INTRODUCTION
PREPARATION OF NITRILE RUBBER
EMULSION TECHNOLOGY
Functionally Terminated Telechelic Liquid Polymers
COMPpOUNDING NITRILE RUBBER CEMENTS
Polymer Selection and Solubilization
Types of Compounding Ingredients
APPLICATION
Nitrile Rubber Systems
Nitrile Rubber/Phenolic Adhesives
Nitrile Rubber/Epoxy Adhesives
I STYRENE-BUTADIENE RUBBER ADHESIVES
INTRODUCTION
Perspective
History of SBR
Manufacture of SBR
Basic Chemistry of SBR
SBR LATEXES IN ADHESIVES
General
Classification
Benefits of SBR Latexes
Compounding Ingredients
Major Applications
SBR (SOLID) IN ADHESIVES
General
Classification
Compounding Ingredients
Major Applications
I NEOPRENE (POLYCHLOROPRENE) -
BASED SOLVENT AND LATEX ADHESIVES
HISTORY

THE EFFECT OF POLYMER STRUCTURE
NEOPRENE SOLVENT-BASED ADHESIVE CEMENTS
Types of Neoprene
Antioxidants
Metal Oxides
Resins
Fillers
Curing Agents
Solvents
Adhesive Processing
End Uses
Application Methods
NEOPRENE LATEX-BASED ADHESIVES
Anionic Types
Nonionic Type
Compounding
Typical Formulations

I POLYSULFIDE SEALANTS AND ADHESIVES
POLYSULFIDE SEALANTS
Chemistry
Compounding
Curing Agents
Fillers
Plasticizers
Adhesion
Primers
Specifications
ADHESIVES FROM POLYSULFIDE LIQUID
POLYMER-EPOXY RESIN REACTIONS
Chemistry
Physical Properties
Applications
OTHER MERCAPTAN-TERMINATED POLYMERS
Polyethers
Polyesters
Urethanes
Olefin

I PHENOLIC RESIN ADHESIVES
CHEMISTRY
Formaldehyde
Novolaks
Strong Acid Reactions
Weak Acid Reactions
Resoles
Dispersion Resoles
Resin Cure
MANUFACTURE
ABRASIVES
Bonded Abrasives
Coated Abrasives
COATINGS
FOUNDRY
FRICITION COMPOSITES
MOLDING COMPOUNDS
PHOTORESISTS AND CARBONLESS PAPER
LAMINATING
WOOD BONDING
INSULATION AND FOAM
GENERAL ADHESIVES
ENVIRONMENTAL AND TOXICOLOGICAL CONSIDERATIONS
I AMINO RESIN ADHESIVES
HISTORY
RAW MATERIALS
CHEMISTRY
END USES
Particleboard
Plywood
High-Pressure Decorative Laminates
Miscellaneous Applications
TOXICITY

I EPOXY RESIN ADHESIVES
INTRODUCTION
EPOXY RESINS USED IN ADHESIVES
Bisphenol A Based Epoxy Resins
Epoxy Novolac Resins
High performance Epoxy Resins
Flexible Epoxy Resins
CURING AGENTS USED IN ADHESIVES
Polysulfide
Amines
Aliphatic Amines
Cycloaliphatic Amines
Aromatic Amines
Polyamides
Amidoamines
Dicyandiamide
Catalytic Curing Agents
Anhydrides
SUMMARY
DILUENTS
FILLERS
ELASTOMERIC MODIFIERS
TYPICAL ADHESIVE FORMULATIONS
COMPLEMENTARY TECHNOLOGIES
Robotics
Induction Curing
APPLICATIONS AND SUMMARY

I POLYURETHANE - AND ISOCYANATE -
BASED ADHESIVES
REASONS FOR THE EFFECTIVENESS
OF POLYURETHANE AND ISOCYANATE-BASED
ADHESIVES 321-323
TYPES AND USE OF POLYURETHANE
AND ISOCYANATE BASED ADHESIVE SYSTEMS
Method A (isocyanate primer)
METHOD B (CONVENTIONAL PLASTIC OR
RUBBER VEHICLE + ISOCYANATE)
The Relative Effectiveness of "Vulcabond" T and Tx in
Rayon Cord-to-Natural Rubber Adhesion
Method C (in situ polyurethane polymerization)
Method D (polyurethane elastomer without or
with added polyisocyanate)
Method E (blocked di- or polyisocyanate)
Method F (aqueous dispersion)
Method G (film and tape)
Method H (powder)
POLYURETHANE STABILIZATION
HANDLING ISOCYANATE BASED ADHESIVES
IDENTIFICATION OF ADHESIVE COMPONENTS

I POLYOLEFIN AND ETHYLENE COPOLYMER-BASED
HOT MELT ADHESIVES
ADHESIVE FORMULATION
Polymers
Tackifiers
Waxes
HOT MELT ADHESIVES APPLICATIONS
Cases, Cartons, and Trays
Bookbinding
Nonwovens
Furniture
Labels
Polyester Beverage Bottles
Carpet Seaming Tape
Paper Laminates
HOT MELT APPLICATION EQUIPMENT
FUTURE OF HOT MELT ADHESIVE

I POLYVINYL ACETAL ADHESIVES
CHEMISTRY
HEALTH, TOXICOLOGY, AND SAFETY
PHYSICAL PROPERTIES
Solubility
Compatibility
Viscosity
Mechanical Properties
Thermal Properties
USES AS AN ADHESIVES
Hot Melts
Thermosetting Adhesives
Adhesion to Metal
Adhesion to Natural Surfaces
Green Strength Binder
Composites
Adhesion to Glass
Other Uses

I ACRYLIC ADHESIVES
TECHNOLOGY
Chemistry
Glass Transition Temperature (Tg)
Crosslinked Thermosets
BONDING PROCESSES
Pressure Sensitive
Contact Bonding
Heat and Pressure Bonding
Vacuum Bonding
Wet Laminating Adhesives
Filled Adhesives
ENGINEERING ADHESIVES
Chemistry and Technology
Radiation Curing
Application Processes
Current Uses

I PRESSURE-SENSITIVE ADHESIVES FOR TAPES AND LABELS
CONSTRUCTIONS
Manufacture
Backings
Release Coatings and Liners
ADHESIVE SYSTEMS
Tackifiers
Rubber-Based Adhesives
Acrylics
Silicones
Miscellaneous Polymers
Surface Energetics
Tack
Peel Adhesion
Cohesive Strength
TEST METHODS
Tack Testing
Peel Adhesion Testing
Shear Resistance Testing
Miscellaneous Tests
Tapes
Labels and Decals
Other Products
Adhesive Mass Thicknesses

I FACTORS INFLUENCING GUM COSTS AND APPLICATIONS
DEFINITION OF GUM
FACTORS AFFECTING RAW GUM COSTS
1. Exudate Gums
2. Seaweed Gums
3. Seed Gums
4. Starch and Cellulose Derivatives
INDUSTRIALLY VALUABLE PROPERTIES OF GUMS
1. Linear Netural Polysaccharides
2. Branched Neutral Polysaccharides
3. Polysaccharides with Carboxyl Groups
4. Polysaccharides with Strong Acid Groups
5. Polysaccharides with Basic Groups

MODIFIED GUMS
1. Introduction of Neutral Groups
2. Introduction of Acidic Groups
3. Introduction of Groups
4. Graft Polymers
5. Other Chemical Modifications of Natural Polysaccharides

I AGAR
INTRODUCTION
SOURCE
1. Raw Material
2. Processing
3. Finished Product
HISTORY
1. Discovery
2. Manufacture
3. Use
4. Present Applications
5. Derivatives

IV. STRUCTURE
PROPERTIES
1. Solid
2. Sol
3. Gel

I ALGIN
INTRODUCTION
PRODUCTION
1. Source
2. Seasonal Variations
3. Harvesting
4. Processing
5. Grades
6. Industrial Importance
7. Potential Amount
APPLICATIONS
1. Introduction
2. Mode of Action
3. Foods
DAIRY PRODUCTS
BAKERY PRODUCTS
OTHER FOOD PRODUCTS
4. Pharmaceuticals and Cosmetics
5. Industrial Applications
PAPER PRODUCTS
TEXTILE PRODUCTS
RUBBER PRODUCTS
OTHER INDUSTRIAL USES

STRUCTURE

PROPERTIES
1. Dissolution
2. Solution Properties
3. Gels
4. Films
5. Compatibilities
6. Algin in Foods
7. Other Properties

LAMINARAN

INTRODUCTION

PRODUCTION
1. Source
2. Producing Areas
3. Seasonal Effects
4. Collection
5. Preparation

HISTORY OF DEVELOPMENT

STRUCTURE

PROPERTIES

CHITIN AND ITS DERIVATIVES

INTRODUCTION

PRODUCTION
1. Crustaceans
2. Insects
3. Fungi
4. Preparation
5. Preparation of Deacetylated Chitin, Other Chitin Derivatives, and D-Glucosamine
6. Grades
7. Potential Amount

HISTORY

APPLICATION

1. Sizing
2. Adhesives
3. Emulsion Stabilization and Thickening
4. Pharmaceuticals and Cosmetics
5. Extruded Fibers and Films
6. Glycosamine Hydrochloride in Foods and Pharmaceuticals

STRUCTURE

PROPERTIES
1. Solubility and Viscosity
2. Gels
3. Films and Fibers
4. Adhesiveness
5. Compatibilities

GUM ARABIC

INTRODUCTION

PRODUCTION
1. Republic of the Sudan
3. Nigeria
4. Tanganyika
5. Morocco
6. British Somaliland and Abyssinia
7. South Africa
8. India
9 Australia
10. Miscellaneous

TYPES OF GUM IN THE UNITED STATES

STRUCTURE

ARABIC ACID
1. Preparation
2. Properties
3. Degraded Gum Arabic
4. Derivatives of Arabic Acid

FACTORS WITH AFFECT VISCOSITY
1. Concentration
2. Temperature
3. Electrolytes
4. pH
5. Solvents Others Than Water
6. Aging
7. Mechanical Treatment
8. Ultrasonic Vibrations and Ultraviolet Irradiation

OTHER PHYSICAL PROPERTIES
1. Surface Tension
2. Freezing Point

COACERVATION
1. Introduction
2. Gum Arabic-Gelatin Coacervates
3. Preparation of Coacervates
4. General Properties, Physical Appearance, and Composition
5. Effect of Temperature
6. Effect of pH
7. Reactions of Salts
8. Physical Phenomena
9. Uses of Gum Arabic-Gelatin Coacervates
10. Coexisting Coacervates
11. Other Coacervates

CHEMICAL PROPERTIES
1. Chemical Reactivity
2. Solubility
3. Enzymes

SEPARATION AND IDENTIFICATION OF GUM ARABIC
1. Isolation of Gum Arabic from Commercial Products
2. Systematic Analytical Scheme
3. Physical Confirmatory Tests
4. Chemical Confirmatory Tests
5. Direct Tests for Gum Arabic in Some Commercial Products

USES
1. Foods
2. Adhesives
3. Paints
4. Inks
5. Lithography
6. Textiles
7. Miscellaneous

ICORN HULL GUM
INTRODUCTION
SOURCE AND PREPARATION
DEVELOPMENT OF USE
STRUCTURE
PROPERTIES

IGUAR GUM
INTRODUCTION
PRODUCTION
1. Source and Producing Areas
2. Agronomics
3. Purification
4. Grades
USES
1. HISTORY
2. Mining Industry
3. Foods
4. Cosmetics and Pharmaceuticals
5. Paper Industry
6. Explosives
7. Derivatives
STRUCTURE
PROPERTIES
1. Viscosity
2. Gels
3. Films
4. Adhesiveness
5. Miscellaneous

IGUM KARAYA
INTRODUCTION
Production
1. Source
2. Producing Areas
3. Seasonal Effect
4. Collection
5. Purification
6. Grades
7. Impurities
8. Potential Amount
USES
1. History
2. Commercial Value
STRUCTURE
PROPERTIES
1. Dissolution and Viscosity Measurements
2. Gels
3. Films
4. Adhesiveness
5. Acid Resistance
6. Dispersibility
7. Ropiness
8. Water Retention
1. Source
2. Producing Areas
3. Seasonal Effects
4. Collection
5. Purification
6. Grades and Definitions of Grades
7. Impurities
8. Quantities Marketed
9. General Industrial Uses Other Than is Foods
FOOD
Mode of Action
Structure
Properties
1. Pectin Types as Defined by Degree of Methylation
2. Solubility
3. Solutions, Stability and Viscosity
4. Gels
5. Assay Methods, Calculations, and Composition

DIRECTORY SECTION
PRESENT MANUFACTURERS
SUPPLIERS OF RAW MATERIALS
SUPPLIERS OF THE PLANT M/C & EQUPT.

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by..
manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.