The Complete Technology Book on Aluminium and Aluminium Products

Author: NPCS Board of Consultants & Engineers

Format: Paperback ISBN: 8178330156

Code: NI186 **Pages**: 672

Price: Rs. 1,450.00 US\$ 150.00

Publisher: Asia Pacific Business Press Inc.

Usually ships within 5 days

Aluminium, the second most plentiful metallic element on the earth, became an economic competitor in engineering applications as recently as the end of 19th century. It was become a metal for its time. Aluminium possesses many characteristics that make it highly compatible with recycling. It is resistant to corrosion and it thus retains a high level of metal value after use, exposure, or storage. Once produced, it can be considered a permanent resource for recycling, preferably in to similar products. It is essentially a soft and weak metal which has to be strengthened by alloying with suitable elements. The elements which are added to aluminium is appreciable quantities to increase its strength and improve other properties are surprisingly limited to only four, namely, magnesium, silicon, copper and zinc. These are added singly or in combination. It is theoretically 100% recyclable without any loss of its natural qualities. It is the most widely used non ferrous metal. The applications of aluminium are grown in many fields for example; electric conductors, windows and building components, aircraft, foil packaging etc. It has a major role in packaging industry especially in pharmaceuticals. It includes different types of packaging; unit packaging, bunch wrapping, strip packaging, thermoformed unit packaging and sachets Aluminium alloys with a wide range of properties are used in engineering structures. Aluminium alloys are divided into two major categories; casting compositions and wrought compositions. Further differentiation for each category is based on the primary mechanism. The most commercially mined aluminium ore is bauxite, as it has the highest content of the base metal. The primary aluminium production process consists of three stages. First is mining of bauxite, followed by refining of bauxite to alumina and finally smelting of alumina to aluminium. India has the fifth largest bauxite reserves with deposits 5% of world deposits. Indian share in world aluminium capacity rests at about 3%; it will touch almost 13% to 15% of the growth rate.

This book basically deals with aluminium production, heat treatable and non heat treatable alloys, properties of cast aluminium alloys, testing of liquid & soldification contraction of aluminium alloys, trends in the improving economic use of aluminium, laboratory investigation of carbon anode consumption in the electrolytic production of aluminium, alumina extraction from a pennsylvania diaspore clay by an ammonium sulfate process, the recovery of alumina from its ores by a sulfuric acid process, initial softening in some aluminium base precipitation hardening alloys, basic properties of aluminium foil, how to select a flexible foil packaging laminate, printing on aluminium foil, designing aluminium foil packs etc.

The present book covers the need within the industrial and academic communities for up to date information about production of aluminium and extrusion process due to the ever increasing use of this technology. The book provides concepts in the different areas of extrusion technology. It is hoped that its presentation will be very helpful to new entrepreneurs, technocrats, research scholars, libraries and existing units.

Contents

1. GENERAL INTRODUCTION

Aluminium Production

Production Statistics

Aluminium Alloys

Heat-Treatable and Non-heat-Treatable Alloys

Properties

Manufactured Forms

Standardized products

Engineered Products

Finishes

Mechanical Finishes

Chemical Finishes

Electrolytic Finishes

Non-Electrolytic Coatings

Product Classifications

Building and Construction Applications

Containers and Packaging

Transportation

Electrical Applications

Consumer Durables

Machinery and Equipment

Other Applications

2. PROPERTIES OF CAST ALUMINIUM ALLOYS

201.0

4.6Cu-0.7Ag-0.35Mn-

0.35Mg-0.25Ti

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

204.0

4.6Cu-0.25Mg-0.17Fe-0.17Ti

Commercial Name

Applications

Mechanical Properties

206.0, A206.0

4.5Cu-0.30Mn-0.25Mg-0.22Ti

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Chemical Properties

Fabrication Characteristics

208.0

4Cu-3Si

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

238.0

10.0%Cu-4.0%Si-0.3%Mg

Commercial Names

Specifications

Applications

242.0

4Cu-2Ni-2.5Mg

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Electrical Properties

Thermal Properties

Fabrication Characteristics

295.0

4.5Cu-1.1Si

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

296.0

4.5Cu-2.5Si

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

308.0

5.5Si-4.5Cu

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

319.0

6Si-3.5Cu

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

332.0

9.5%Si-3.0%Cu-1.0%Mg

Commercial Names

Specifications

Applications

Mechanical Properties

336.0

12Si-2.5Ni-1Mg-1Cu

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

339.0

12.0%Si-1.0%Ni-1.0%Mg-2.25%Cu

Commercial Names

Applications

354.0

9Si-1.8Cu-0.5Mg

Commercial Name

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Fabrication Characteristics

355.0, C355.0

5Si-1.3Cu-0.5Mg

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

356.0, A356.0

7Si-0.3Mg

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Radiation Effect on Properties

Fabrication Characteristics

357.0, A357.0

7Si-0.5Mg

Specifications

Chemical Composition

Applications

Mechanical properties

Mass Characteristics

Thermal Properties

Fabrication Characteristics

359.0

9Si-0.6Mg

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Fabrication Characteristics

360.0, A360.0

9.5Si-0.5Mg

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

380.0, A380.0 8.5Si-3.5Cu

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

383.0

10.5Si-2.5 Cu

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

384.0, A384.0

11.2Si-3.8Cu

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

390.0, A390.0

17.0Si-4.5Cu-0.6Mg

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

413.0, A413.0

12Si

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

443.0, A443,0, B443.0, C443.0

5.2Si

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

514.0

4Mg

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass characteristics

Thermal properties

Electrical properties

Fabrication Characteristics

518.0

8Mg

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass characteristics

Thermal Properties

Electrical Properties

520

10Mg

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

535.0, A535.0, B535.0

7Mg

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Chemical Properties

Fabrication Characteristics

712.0

5.8Zn-0.6Mg-0.5Cr-0.2Ti

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

713.0

7.5Zn-0.7Cu-0.35Mg

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Chemical Properties

Fabrication Characteristics

771.0

7Zn-0.9Mg-0.13Cr

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

850.0

6.2Sn-1Cu-1Ni

Commercial Names

Specifications

Chemical Composition

Applications

Mechanical Properties

Mass Characteristics

Thermal Properties

Electrical Properties

Fabrication Characteristics

3. PHYSICAL METALLURGY OF ALUMINIUM ALLOYS

Aluminium-Magnesium Alloys

Al-Si alloys

Al-Cu alloys

Hardness Data for Al-3.8% Cu Alloy

Aluminium-zinc alloys

Complex Alloys

Aluminium-Zinc-Magnesium Alloys

Al-Cu-Mg alloys

Al-Mg-Si alloys

Effect of Plastic Deformation on Precipitation

Intermetallic Compounds and their Effects

Corrosion of Aluminium Alloys

4. TESTING OF LIQUID & SOLDIFICATION CONTRACTION OF ALUMINIUM ALLOYS

- 1. Derivation of Correlations
- 2. Experimental procedure

3. Results and Discussion

5. TRENDS IN THE IMPROVING ECONOMIC USE OF ALUMINIUM

- 1. Reduction in Dimensions and Weight
- 2. More Efficient Use of Metal
- 3. Improvements in Methods of Protection
- 4. New Concepts in Design

Corrosion Studies Applied to Roofing Sheet and Water Pipes

Using Structural Aluminium Efficiently

Aluminium Electrical Conductors

Overhead Conductors

Underground Cable

Transformer Windings

Development of Welding Techniques and Weldable Alloys

Welding Processes

Development of Alloys

Conclusion

6. LABORATORY INVESTIGATION OF CARBON ANODE CONSUMPTION IN THE ELECTROLYTIC PRODUCTION OF ALUMINIUM

Introduction

Materials

Anode Carbon

Electrolyte Materials

Apparatus

Procedure

General

Operation at Different Current Densities

Operation at Different Temperatures

Operation at Different Electrolyte Compositions

Results

Effect of Anode Current Density

Effect of Electrolyte Temperature

Effect of Carbon Baking Temperature

Effect of Electrolyte Composition

NaF/AIF3 Ratio

Alumina Content

Calcium Fluoride Content

Sodium Chloride Content

Graphite and Coke

Mechanism of Anode Consumption

Erosion of Particles of Coke from the Active Anode Surface

Formation of CO

7. ALUMINA EXTRACTION FROM A PENNSYLVANIA DIASPORE CLAY BY AN AMMONIUM SULFATE PROCESS

Introduction

Related Literature

Raw Material

Procedure

Results and Discussion

Crushing and Grinding

Mixing and Pelletizing

Roasting

Leaching and Primary Crystallization

Alum Purification

Alumina Precipitation and Ammonium Sulfate Crystallization

Conclusion

8. THE RECOVERY OF ALUMINA FROM ITS ORES BY A SULFURIC ACID PROCESS

Introduction

The C.S.I.R.O. Process

Synopsis of Process

Experimental Procedures

Extraction Efficiency

Nature of Ore

Particle Size

Pulp Density and Liquor Concentrations

Temperature

Time

Excess Acidity

Control of Impurities

Silica

Titanium

Other trivalent Metals

Bivalent Metals

Univalent Metals

Phosphate

Recycling Operations

Digestionâ€"Modification

Reduction

Hydrolysisâ€"Calcination

Acid Regeneration

Calcination

Liquid-Solid Separations

Digestion

Modification Residue

Modified Liquor

Hydrolysis

Costing

Raw Materials

Energy

Equipment

9. AN IMPROVED ALUMINIUM CONDUCTOR

Electrical Properties of Aluminium

Experimental Work

The PM-2 Conductor

Corrosion Tests

Earthing Tests

Conclusion

10. INITIAL SOFTENING IN SOME ALUMINIUM BASE PRECIPITATION HARDENING ALLOYS

Experimental Procedure

Preparation of Alloys

Heat Treatment

Hardness Measurements

X-ray Diffraction Studies

Results

Dissussion

Quenched Hardness

Extent of Softening

Time to Reach Minimum Hardness

Range of Softening

X-ray line width

Conclusion

11. BASIC PROPERTIES OF ALUMINIUM FOIL

Introduction

Production of Aluminium

Manufacture of Aluminium Foil

Metal Purity

Alloying

Annealing

Soft Foil For Flexible Packaging

Safety of Foil For Food Packaging

Strength

Perforations or Pinholes

Foil Costs

Need For Standardization

Future of Foil in Packaging

12. HOW TO SELECT A FLEXIBLE FOIL PACKAGING LAMINATE

Introduction

Materials

Physical Properties of Foil

Physical Properties of Paper

Physical Properties of Films

Cellulose Film

Polyamide (Nylon)

Polyester (Terylene)

Polythene

Polypropylene

PVDC

Note

Laminating Processes

Wax

Hot Melts

Pastes

Polythene

Lacquers

Characteristics of Laminates

Physical Characteristics

Economic Characteristics

Briefing The Supplier

Typical Foil Laminates

For Sweets and Chocolates

For Cakes and Biscuits

For Dairy Trades

For Toiletries

Miscellaneous General

The Future

13. DESIGNING ALUMINIUM FOIL PACKS

Introduction

Package Design Factors

Co-ordination of Design Policy

The Corporate Image

Packaging for Export

Aspects of Designing with Aluminium Foil

Methods of Rendering

14. PRINTING ON ALUMINIUM FOIL

The Printing Processes Used

- 1 Gavure
- 2. Letterpress
- 3. Flexography
- 4. Offset Lithography
- 5. Silk Screen

Special Requirements for Printing Aluminium Foil

Advantages and Limitations of the Printing Processes Used

Technical Considerations

Gravure

Flexography

Letterpress

Offset Lithography

Silk Screen

Economic Considerations

Other Printing Processes

Web Offset Lithography

Electrostatic Printing

15. HEAT SEALING FOIL PACKS

Importance of Heat-sealing

Principles of Heat-sealing

Sealing Coated Aluminium Foils by Heat

Determination of Optimum Heat-sealing Conditions

Factors Controlling the Heat-seal Strength

Failure by Peeling

Paper/Foil Laminates

Types of Thermoplastic Coatings

Sealing Temperatures of Typical Foil Laminates

16. AUTOMATIC PACKAGING IN FOIL

17. LIQUID PACKAGING IN ALUMINIUM FOIL

Introduction

Marketing and Economic Considerations

- 1. Economics
- 2. Convenience
- 3. Presentation

Types of Foil Pack that are Formed, Filled and Sealed from the Reel

Sachets

Two-cavity Sachets

Production of Sachets

Rectangular and Tetrahedral Packs Incorporating Aluminium Foil

For Milk and Cream

For Fruit Juice

Gusseted Bottom Packs

Other Liquids And Semi-liquids

The Value of Foil In Sealable Laminates

What of the Future?

18. ALUMINIUM FOIL IN PHARMACEUTICAL PACKAGING

Introduction

Aluminium Foil as a Cap Liner Facing for Rigid Containers

Unit Packaging

Bunch Wrapping

Strip Packaging

Thermoformed Unit Packaging

Sachets

19. STERILIZABLE ALUMINIUM FOIL FOOD PACKS

Introduction

Reasons for Using a Processable Pouch

Laminate Structure

Pinhole Damage in Foil

Sterilizing Techniques

Filling and Sealing Pouches

Pouch Integrity

Microbiological Aspects

Storage Testing and Heat Penetration

The Commercial Situation

Summing-up

20. BENEFICIATION OF BAUXITE

Experimental Procedure and Results

Evaluation of the Economics of Bauxite Beneficiation

A Proposed Scheme for Beneficiation by Dry Screening

21. ALUMINIUM IN ENGINEERING

Transport Industry

Air

Road

Rail

Marine

Automobile Ancillaries

Airconditioning and Refrigeration

Bearings

Electrical Machinery

Construction Industry

Mining Industry

Other Applications

22. ALUMINIUM DIE CASTINGS IN AUTOMOBILES

Automotive Applications

Recent Trends for Bigger Automotive Castings

Aluminium Die Castings in Indian Automobile

Conclusion

23. NON-FUSION JOINING OF ALUMINIUM

Soldering

Joint Design

Soldering Methods

Friction Soldering

Flux Soldering

Organic Flux Soldering

Chloride Fluxes

Reaction Soldering

Selection of Solders

Soft Soldering

Hard Solders

Brazing

Joint Types

Performance of Joints

Typical Applications

Cold Pressure Welding

Pressure Welding Technique

Butt Welding

Lap Welding

Applications

Ultrasonic Joining

Explosive Joining

24. SELECTIVE ABSORPTION OF FLUORINE FROM THE GASES FROM ALUMINIUM REDUCTION CELLS WITH VERTICAL SPIKE SODERBERG ANODES

Introduction

Theoretical Analysis

General Principles of Selective Absorption of Hydrogen Fluoride

A Continuous Process Based on Controlled Addition of Alkali

General Description

Absorption of Hydrogen fluoride

Absorption of Sulfur Dioxide

Process Working with Pure Water as Absorbent

General Considerations

Absorption of Hydrogen Fluoride

Absorption of Sulfur Dioxide

Pilot Plant Investigations

General

Process with Controlled Alkali Addition

Process Using Pure Water

Comparison of the Two Processes

Further Development of the Pure Water Process

General Considerations

A New Type of Gas Washer, Combining a very High Absorption Efficiency for Hydrogen Fluoride with Complete Selectivity and a High Dust Removal Efficiency

Results of Technical Scale Operation

25. THE FLUORINE PROBLEM IN

ALUMINIUM PLANTS

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

Our various services are: Detailed Project Report, Business Plan for Manufacturing Plant, Start-up Ideas, Business Ideas for Entrepreneurs, Start up Business Opportunities, entrepreneurship projects, Successful Business Plan, Industry Trends, Market Research, Manufacturing Process, Machinery, Raw Materials, project report, Cost and Revenue, Pre-feasibility study for Profitable Manufacturing Business, Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Business Opportunities, Investment Opportunities for Most Profitable Business in India, Manufacturing Business Ideas, Preparation of Project Profile, Pre-Investment and Pre-Feasibility Study, Market Research Study, Preparation of Techno-Economic Feasibility Report, Identification and Section of Plant, Process, Equipment, General Guidance, Startup Help, Technical and Commercial Counseling for setting up new industrial project and Most Profitable Small Scale Business.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.

NIIR PROJECT CONSULTANCY SERVICES, 106-E, Kamla Nagar, New Delhi-110007, India. Email: npcs.india@gmail.com Website: NIIR.org

Sat, 20 Apr 2024 12:30:58 +0530