Coal is the product of plants, mainly trees that died tens or hundreds of millions of years ago. Coal is a fossil fuel and is the altered remains of prehistoric vegetation that originally accumulated in swamps and peat bogs. The energy we get from coal today comes from the energy that plants absorbed from the sun millions of years ago. Coal is used primarily as an energy source, either for heat or electricity. It was once heavily used to heat homes and power locomotives and factories. Bituminous coal is also used to produce coke for making steel and other industrial process heating. Lignin is a constituent of the cell walls of almost all dry land plant cell walls. It is the second most abundant natural polymer in the world, surpassed only by cellulose. Lignin is found in all vascular plants, mostly between the cells, but also within the cells, and in the cell walls.

Wood is an aggregate of cells essentially cellulose in composition, which are cemented together by a substance called lignin. The cells are made of three substances called cellulose (about 50 percent), lignin (which makes up a fifth to a quarter of hardwoods but a quarter to a third of softwoods), and hemicellulose. Rosin refers to an extraction process that utilizes a combination of heat and pressure to nearly instantaneously squeeze resinous sap from your initial starting material.

In India's energy sector, coal accounts for the majority of primary commercial energy supply. With the economy poised to grow at the rate of 8-10% per annum, energy requirements will also rise at a reasonable level. The Indian coal industry aspires to reach the 1.5 billion tonne (BT) mark by FY 2020. In fore-coming years, the industry will naturally need to focus on building on the success, and be on track for reaching the FY 2020 goal. One of the primary goals of the Government of India is to ensure that it is able to meet the country's power generation needs. Another aim is to lower the country's reliance on coal imports by boosting the coal production quickly.

It will be a standard reference book for professionals, entrepreneurs, those studying and researching in this important area and others interested in the field of these industries.

Contents

Chapter 1

Coal

Ethylene

Fischer –Tropsch Synthesis for Olefins

Direct Conversion of Synthesis Gas to Ethylene

Ethanol from Synthesis Gas

Olefins from Methanol

Methanol Homologation

Methanol to Acetic Acid

Ethylene Glycol

Acetic Anhydride

Vinyl Acetate

Other Chemicals

Coal Pyrolysis Processes

Acetylene

Production of Chemicals by Coal Liquefaction Processes

Conclusion

Chapter 2

Analysis of Coal and Coke
Methods of Analysis

Sampling

Determination of Constitution and Physical Properties

Functional Group Analysis

Spectroscopy

Determination of Optical Constants

Electron Microscopy

Density

X-Ray Diffraction

Specification Tests

Proximate Analysis

Ultimate Analysis

Calorific Value

Fusibility of Coal Ash

Behaviour on Heating

Equilibrium Moisture of Coal at 96-97%

Relative Humidity and 39°C

Determination of Harcgbgrove Grindability

Index of Coal

Special Constituents

Coal Classification

Chapter 3

Cotton

Methods of Analysis

Modified Cottons
Chapter 4

Lignin and Hemicellulose

Hemicellulose

Assay systems

Classification

Thermophilic Hemicellulases

Alkaline active xylanases

β - Xylosidase

Mannanases and galactanses

Accessory enzymes for Hemicellulose utilization

Lignin

Lignin-degrading enzymes

Lignin degradation in whole cell cultures

Degradation by cell-free enzyme systems

Role of glycosides in Lignin degradation

Lignin-carbohydrate complexes

Fractionation of Lignin and Carbohydrate in wood

Isolation of LCCs

Chemical characteristics of LC bonds
Ferulic and p-coimaric ester side chains
Frequency and stability of LC bonds
Residual lignin in kraft pulp
Biodegradation of LCCs
Residual LC structures after exhaustive enzymatic digestion
Solubitization of LCC by microbial activity
Enzymatic treatments of pulps
Conclusion

Chapter 5
Degradation of Wood
Introduction
Gross Chemical Composition
Distribution of Wall Components
Component Chemistries
Microstructure and Porosity
Degradation of whole wood
Biodegradation of Lignin
Biodegradation of Cellulose
Biodegradation of Hemicellulose
Applications
Conclusion

Chapter 6
Cca-Treated Wood
Introduction
Materials and methods
Results and Discussion

Conclusion

Chapter 7
Wood-Polymer Composites

Introduction

Materials and Methods

Monomers

Wood specimens

Treatment of specimens with monomers

Volumetric swelling and moisture content

Result

Swelling of wood soaked in monomers

Polymer loading

Volumetric swelling of WPC specimens

Moisture content of WPC specimens

Conclusions

Chapter 8
Lignocellulosic-Plastic Composites from Recycled Materials

Municipal Solid Waste as a Source of Lignocellulosic Fibre and Plastics

Thermoformable composites as Outlets for Waste Paper, Wood and Plastics

Recent Research on Wood Fiber-Thermoplastic Composites

Research and Development Needs

Concluding Remarks
Chapter 9
Chemical Modification of Wood Fiber

Introduction

Experimental Procedure

Esterification Procedure

Analyses of Esterification Products

Board Formation

Board Testing

Moisture sorption

Rate and extent of swelling

Results and Discussion

Esterification of Wood Fiber

Moisture Sorption of Esterified Fiberboards

Rate and Extent of Swelling of Fiberboards in Liquid Water

Plasticization of Esterified Fibers

Conclusions

Chapter 10

Delignification of Wood with Peroxidic Acid

Generation of peroxidic acid

Decomposition of peroxidic acid

Delignification of aspen wood

Conclusions

Experimental

Chapter 11
Rosin and Rosin Derivatives
Composition
Reaction and derivatives
Isomerization
Maleation
Oxidation
Photosensitized oxidation
Hydrogenation
Hydrogenless Hydrogenation
Polymers of vinylesters of hydrogenated rosin
Prehydrogenation
Hydrocracking of Rosin
Dehydrogenation
Polymerisation
Analysis
Compatibility
Solubility
Instrumental analysis
Gas chromatography analysis
Infrared Spectroscope
Nuclear magnetic resonance
Ultraviolet spectroscopy
X-Ray Analysis
Mass Spectroscopy
Phenolic modification
Salt formation
With metals
With unsaturated cyclic and acyclic hydrocarbons

Example-2
Rosin-isoprene condensate (Example-3)
Rosin-isobutene condensate (Example-4)

Example -5
Rosin-styrene condensalt (Example-6)
Rosin-cyclopentadiene condensate (Example-7)
Rosin-coumarone-indene condensate (Example-8)
Rosin-divinylbenzene condensate (Example-9)

Example-10
Esterification
With Glycerol
With pentaerythritol and other polyhydric alcohols
With monohydric alcohols
Hydrogenolysis
Polyesterification
Copolyesters
Ammonolysis
Preparations
Dehydroabietylamine acetate
Dehydroabietylamine
Typical Uses
Asphalt additives
Chemical Intermediates
Corrosion Inhibitors
Flotation Reagents
Preservatives

Resolving agent

Chemical and physical properties of Amine D acetate

Stability to heat and storage

Surface Activity

Chemical Reactivity

Chemical and Physical Properties of Amine D acetate

Solubility

Note

Stability to Heat and Storage

Stability to Air and Sunlight

Surface Activity

Styrenation

Decarbxylation

Hydroxymethylation and hydroxylation

Methods of preparations

Nitrogenous intermediates

Methyl levopimarate (i)

Methyl neoabietate (ii)

Methyl photolevopimarate (iii)

Reaction of SSI with Methyl levomarate (i)

Reaction of Chlorosulphonyl isocyanate with methyl neoabietate (ii)

Reaction of Chlorosulphonyl isocyanate with methyl photolevopimarate (iii)

Fumaroniprile Adduct of levopimaric acid
Tetracyanoethylene Adduct of levopimaric acid

Acrylonitrile adducts of levopimaric acid

Polyoxyalkylation

Chapter 12
The Polymerizable Half Esters of Rosin

Experimental
Preparation and properties of monomers
Maleic rosin esters with reactive groups
Polymerization & Copolymerization
Aqueous Polymerization
Suspension Polymerization
Secondary reactions and graft copolymers
Reaction Involving Crosslinking
Applications
Coatings
Inks
Textiles
Conclusions

Chapter 13
Photographs of Plant & Machinery with Supplier’s

Contact Details

About NIIR
NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.


NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.