Coal is the product of plants, mainly trees that died tens or hundreds of millions of years ago. Coal is a fossil fuel and is the altered remains of prehistoric vegetation that originally accumulated in swamps and peat bogs. The energy we get from coal today comes from the energy that plants absorbed from the sun millions of years ago. Coal is used primarily as an energy source, either for heat or electricity. It was once heavily used to heat homes and power locomotives and factories. Bituminous coal is also used to produce coke for making steel and other industrial process heating. Lignin is a constituent of the cell walls of almost all dry land plant cell walls. It is the second most abundant natural polymer in the world, surpassed only by cellulose. Lignin is found in all vascular plants, mostly between the cells, but also within the cells, and in the cell walls.

Wood is an aggregate of cells essentially cellulose in composition, which are cemented together by a substance called lignin. The cells are made of three substances called cellulose (about 50 percent), lignin (which makes up a fifth to a quarter of hardwoods but a quarter to a third of softwoods), and hemicellulose. Rosin refers to an extraction process that utilizes a combination of heat and pressure to nearly instantaneously squeeze resinous sap from your initial starting material.

In India's energy sector, coal accounts for the majority of primary commercial energy supply. With the
economy poised to grow at the rate of 8-10% per annum, energy requirements will also rise at a reasonable level. The Indian coal industry aspires to reach the 1.5 billion tonne (BT) mark by FY 2020. In fore-coming years, the industry will naturally need to focus on building on the success, and be on track for reaching the FY 2020 goal. One of the primary goals of the Government of India is to ensure that it is able to meet the country's power generation needs. Another aim is to lower the country's reliance on coal imports by boosting the coal production quickly.


It will be a standard reference book for professionals, entrepreneurs, those studying and researching in this important area and others interested in the field of these industries.

Contents

Chapter 1
Coal
Ethylene
Fischer –Tropsch Synthesis for Olefins
Direct Conversion of Synthesis Gas to Ethylene
Ethanol from Synthesis Gas
Olefins from Methanol
Methanol Homologation
Methanol to Acetic Acid
Ethylene Glycol
Acetic Anhydride
Vinyl Acetate
Other Chemicals
Coal Pyrolysis Processes
Acetylene
Production of Chemicals by Coal Liquefaction Processes
Chapter 2

Analysis of Coal and Coke

Methods of Analysis

Sampling

Determination of Constitution and Physical Properties

Functional Group Analysis

Spectroscopy

Determination of Optical Constants

Electron Microscopy

Density

X-Ray Diffraction

Specification Tests

Proximate Analysis

Ultimate Analysis

Calorific Value

Fusibility of Coal Ash

Behaviour on Healing

Equilibrium Moisture of Coal at 96-97%

Relative Humidity and 39oC

Determination of Harcgbgrove Grindability

Index of Coal

Special Constituents

Coal Classification
Chapter 3
Cotton
Methods of Analysis
Modified Cottons
Finishing Agents
Separation and Identification
Spectroscopic Methods
Inorganic Constituents
Chemical Methods
Spectroscopic Methods

Chapter 4
Lignin and Hemicellulose
Hemicellulose
Assay systems
Classification
Thermophilic Hemicellulases
Alkaline active xylanases
ß - Xylosidase
Mannanases and galactanases
Accessory enzymes for Hemicellulose utilization
Lignin
Lignin-degrading enzymes
Lignin degradation in whole cell cultures
Degradation by cell-free enzyme systems
Role of glycosides in Lignin degradation
Lignin-carbohydrate complexes
Fractionation of Lignin and Carbohydrate in wood
Isolation of LCCs
Chemical characteristics of LC bonds
Ferulic and p-coimaric ester side chains
Frequency and stability of LC bonds
Residual lignin in kraft pulp
Biodegradation of LCCs
Residual LC structures after exhaustive enzymatic digestion
Solubitization of LCC by microbial activity
Enzymatic treatments of pulps
Conclusion

Chapter 5
Degradation of Wood
Introduction
Gross Chemical Composition
Distribution of Wall Components
Component Chemistries
Microstructure and Porosity
Degradation of whole wood
Biodegradation of Lignin
Biodegradation of Cellulose
Biodegradation of Hemicellulose
Applications
Conclusion
Chapter 6
Cca-Treated Wood

Introduction

Materials and methods

Results and Discussion

Conclusion

Chapter 7
Wood-Polymer Composites

Introduction

Materials and Methods

Monomers

Wood specimens

Treatment of specimens with monomers

Volumetric swelling and moisture content

Result

Swelling of wood soaked in monomers

Polymer loading

Volumetric swelling of WPC specimens

Moisture content of WPC specimens

Conclusions

Chapter 8
Lignocellulosic-Plastic Composites from Recycled Materials

Municipal Solid Waste as a Source of Lignocellulosic Fibre and Plastics

Thermoformable composites as Outlets for Waste Paper, Wood and Plastics
Recent Research on Wood Fiber-Thermoplastic Composites

Research and Development Needs

Concluding Remarks

Chapter 9

Chemical Modification of Wood Fiber

Introduction

Experimental Procedure

Esterification Procedure

Analyses of Esterification Products

Board Formation

Board Testing

Moisture sorption

Rate and extent of swelling

Results and Discussion

Esterification of Wood Fiber

Moisture Sorption of Esterified Fiberboards

Rate and Extent of Swelling of Fiberboards in Liquid Water

Plasticization of Esterified Fibers

Conclusions

Chapter 10

Delignification of Wood with Pernitric Acid

Generation of pernitric acid

Decomposition of pernitric acid

Delignification of aspen wood

Conclusions
Experimental

Chapter 11
Rosin and Rosin Derivatives
Composition
Reaction and derivatives
Isomerization
Maleation
Oxidation
Photosensitized oxidation
Hydrogenation
Hydrogenless Hydrogenation
Polymers of vinylesters of hydrogenated rosin
Prehydrogenation
Hydrocracking of Rosin
Dehydrogenation
Polymerisation
Analysis
Compatibility
Solubility
Instrumental analysis
Gas chromatography analysis
Infrared Spectroscope
Nuclear magnetic resonance
Ultraviolet spectroscopy
X-Ray Analysis
Mass Spectroscopy

Phenolic modification

Salt formation

With metals

With unsaturated cyclic and acyclic hydrocarbons

Example-2

Rosin-isoprene condensate (Example-3)

Rosin-isobutene condensate (Example-4)

Example-5

Rosin-styrene condensate (Example-6)

Rosin-cyclopentadiene condensate (Example-7)

Rosin-coumarone-indene condensate (Example-8)

Rosin-divinylbenzene condensate (Example-9)

Example-10

Esterification

With Glycerol

With pentaerythritol and other polyhydric alcohols

With monoydric alcohols

Hydrogenolysis

Polyesterification

Copolymers

Ammonolysis

Preparations

Dehydroabietylamine acetate

Dehydroabietylamine

Typical Uses

Asphalt additives
Chemical Intermediates
Corrosion Inhibitors
Flotation Reagents
Preservatives
Resolving agent

Chemical and physical properties of Amine D acetate

Stability to heat and storage

Stability to heat and storage

Surface Activity

Chemical Reactivity

Chemical and Physical Properties of Amine D acetate

Solubility

Note

Stability to Heat and Storage

Stability to Air and Sunlight

Surface Activity

Styrenation

Decarbxylation

Hydroxymethylation and hydroxylation

Methods of preparations

Nitrogenous intermediates

Methyl levopimarate (i)

Methyl neoabietate (ii)

Methyl photolevopimarate (iii)

Reaction of SSI with Methyl levomarate (i)
Reaction of Chlorosulphonyl isocyanate with methyl neoabietate (ii)
Reaction of Chlorosulphonyl isocyanate with methyl photolevopimarate (iii)
Fumaroniprile Adduct of levopimmaric acid
Tetracyanoethylene Adduct of levopimmaric acid
Acrylonitrile adducts of levopimmaric acid
Polyoxyalkylation

Chapter 12
The Polymerizable Half Esters of Rosin

Experimental
Preparation and properties of monomers
Maleic rosin esters with reactive groups
Polymerization & Copolymerization
Aqueous Polymerization
Suspension Polymerization
Secondary reactions and graft copolymers
Reaction Involving Crosslinking
Applications
Coatings
Inks
Textiles
Conclusions

Chapter 13
Photographs of Plant & Machinery with Supplier’s
About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.


NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

Our Detailed Project report aims at providing all the critical data required by any entrepreneur vying to venture into Project. While expanding a current business or while venturing into new business, entrepreneurs are often faced with the dilemma of zeroing in on a suitable product/line.