With the introduction of green revolution technologies, the modern agriculture is getting more and more dependent upon the steady supply of synthetic inputs. Intensive agriculture with the use of chemical fertilizers in large amount has, no doubt, resulted in manifold increase in the productivity of farm commodities but the adverse effect of these chemicals are clearly visible on soil structure, micro flora, quality of water, food and fodder. At this critical juncture, biofertilizers are useful supplement to chemical fertilizers. Organic farming has emerged as the only answer to bring sustainability to agriculture and environment. Biofertilizers is also an ideal for practicing organic farming.

Biofertilizers are the most advanced biotechnology necessary to support developing organic Agriculture, sustainable agriculture, green agriculture and non-pollution agriculture. Bio Fertilizer are natural and organic fertilizer that helps to keep in the soil with all the nutrients and live microorganisms required for the benefits of the plants. Today product like biofertilizers using the biotechnology techniques have proved that biological control is widely regarded as a desirable technique for controlling insects and pests, due to its minimal environmental impact and its avoidance of problems of resistance in the vectors and agricultural pests. The increasing demand for biofertilizers and the awareness among farmers and planters in the use of biofertilizers have paved way for the fertilizer manufacturers and new entrepreneurs to get into biofertilizers production. It is one of the important components of integrated nutrient management, as they are cost effective and renewable source of plant nutrients to supplement the chemical fertilizers for sustainable agriculture.

This book gives a detailed process on manufacture of biofertilizers & organic farming. It contains chapters on biofertilizers, role of biofertilizer in crop production, production and distribution of biofertilizer, organic farming, method of organic farming, weed and pest management, and many more. This book will be very helpful to soil scientists, microbiologists, biologists, students, new entrepreneurs, fertilizer industry, organization engaged in biofertilizers production, training centres and to all those interested in the efficient use and recycling of wastes, resource management and sustainable farming.

Contents

1. BIOLOGICAL WASTES AS SOURCES OF BIOFERTILIZERS
 Significance of Waste Recycling, Chemical Characteristics of Wastes and Utilisation, Hydraulic loading is calculated as follows:, Heavy Metals and Associated Problems, Pathogens and Health Hazards, Effect on Crops Yield and Soil Properties, Effect on Crop Yields, NPK Through Fertilizer, Effect on Soil Properties, Problems in Waste Utilization, Future Research Needs
2. A NOTE ON BIOFERTILIZERS
 Rhizobium, Production of Rhizobium Inoculants, Isolation of Rhizobium, Identification of Rhizobium, Establishing the Starter Culture, Mass culture of Rhizobium, Making the Carrier-based Inoculant, Packing and

3. ROLE OF BIOFERTILIZER IN CROP PRODUCTION
Nitrogen-fixing Bacterial Inoculants, Rhizobium, Classification, Need for Inoculation, Competitiveness and Effectiveness of Strains, Factors Affecting Performance of Inoculant Strains, Yield Response to Inoculation, Azotobacter and Azospirillum, Yield Responses to Inoculation, Effect of Soil Nutrients, Frequency of Inoculation, Phosphate Solubilizing Microorganisms, Mechanism of Action, Yield Responses to Inoculation, Vescicular-Arbuscular Mycorrhizae (VAM), Mechanism of Action, Root Colonisation, Yield Responses to Inoculation, Preparation of Inoculum, Plant Growth Promoting Rhizobacteria, Mode of Action, Yield Response to Inoculation, Future Research Needs, Strategy for Successful Use of Biofertilizers

4. BIOFERTILIZERS FOR RICE ECOSYSTEM

5. GREEN MANURING

6. PRODUCTION AND DISTRIBUTION OF BIOFERTILIZERS
Definition and Classification, Practical Significance of Biofertilizers, Requirement of Biofertilizers, Production Technology of Biofertilizers, Rhizobium, Sources of Mother Cultures, Carriers, Production of Biofertilizers, Rhizobium, Azospirillum & Azotobacter, Blue Green Algae, Standards and Quality Control, Government Support and Programmes, Constraints, Production and Distribution Level Constraints, Storage and Distribution, Constraints at Field Level, Market Level Constraints, Areas for Future Development, Training, Improvement in production technology, Need for preparation of biofertilizer map, Region-specific effective strains, Necessary quality control acts, Proper storage facilities, Conclusions

7. BIOLOGICAL NITROGEN FIXATION
Non-symbiotic Nitrogen Fixation, Features Favourable for Non-symbiotic Nitrogen Fixation, Special Separation of Nitrogen Fixing Cells, Protein-Nitrogenase Association, High Rate of Respiration, Time Specific Nitrogenase Activity, Association With Rapid Oxygen Consumers, Presence of Hydrogenase, Colonizarion, Nitrogenase, Basic Requirements For Nitrogen Fixation, Mechanism of Nitrogen Reduction, Assimilation of Ammonia, Symbiotic Nitrogen Fixation, Root Nodulation, Mechanism of Nitrogen Fixation, Nitrogenase, Requirements For Nitrogen Reduction, Assimilation of Ammonia, Genetics of Nitrogen Fixation, Nif-genes of Klebsiella Pneumoniae, Regulation of Nif Genes, Nif-genes of Azotobacter, Nif-genes of Anabaena, Rhizobial
Genes, Legume Nodulin Genes, Overall Regulation of Genes, Gene Transfer for Nitrogen Fixation, Transfer of Nif genes to Non-nitrogen Fixing Bacteria, Transfer of Nif genes to Plants, Transfer of Nif-genes to Plants, Transfer of Nod Genes, Transfer of Hup Genes

8. THE SOURCE OF ORGANIC MATTER
The Root-system of Crops Soil Algae, Green-manures, Farmyard Manure, Artificial Farmyard Manure

9. THE CHIEF FACTORS IN INDORE PROCESS 159

10. MANUFACTURE OF BIOFERTILIZER BY THE INDORE METHOD
The Compost Factory, Collection And Storage of the Raw Material, Plant Residues, Urine Earth and Wood Ashes, Water and Air, ARrangement and Disposal of the Bedding under the Work Cattle, Charging the Compost Pits, Turning the Compost, Time-table of Operations, Output, Manural Value of Indore Compost

11. ORGANIC MATTER AND SOIL FERTILITY

12. WEED MANAGEMENT IN ORGANIC FARMING

13. PEST MANAGEMENT IN ORGANIC FARMING
Pest Management Methods, Biological alternatives, Organically acceptable chemical alternatives, Cultural alternatives, Biological Control, Advantages of Bio-control.; Botanical pesticides, Bacterial insecticides, Viral insecticides, Microbial antibiotics, Biological control in field crops, Other Crops, Botanics for Storage Pest Control, Seed treatment with materials of plant origin for insect control, Active principles, Cultural Practices/Ecological Methods, Optimum site conditions, Diversity over Time, Rotations, Diversity in space, Habitant enhancement, Role of Non-crop vegetation, Trap crops, Constructed traps, Plant resistance to pests, Traditional Practices for Pest Control, Other Management Practices

14. RICE-FISH INTEGRATION OF ORGANIC FARMING
Externalities of Green Revolution, Rice Productivity in States of India, Lowland Rice Ecologies, Diversification- IPS Approaches, A fish harvest from rice field, Vanishing rice lands - Economic sustainability issues, Pokkali system-the classic example, Rice-Fish, Harnessing complementarities, Group Fish Farming (GFF), Environmental Superiority, Economic sustainability, Win-Win Land use Model

15. CHOICE OF VARIETIES FOR ORGANIC FARMING
What is organic Agriculture?, Selection of rice varieties for organic farming, Weed Control, Soil fertility, Insects and Diseases, Speciality rices for organic farming, Varieties for Special systems of cultivation, Pokkali, Koottumundakan cultivation.

16. COASTAL AGRO-ECO SYSTEM IN ORGANIC RICE FARMING
Organic farming - the truths vs. myths, Organic food tastes better and is of superior quality, Organic food is more nutritious and safer, Organic farming is eco-friendly, Organics as a source of Plant nutrients, Organic Farming and Food Security, Organic Farming- a lesson from China, Biodynamic Farming, System Of Rice Intensification (SRI)

17. MICROORGANISM FOR ORGANIC FARMING
Biological nitrogen fixers, Legume - Rhizobium symbiosis, Azospirillum, Different methods of application of Azospirillum in the field, Cyanobacteria (Blue green algae - BGA), Mass Production of BGA in the field, Anabaena - Azolla Symbiosis, Utilisation of Azolla for rice, Mass production of Azolla in the field, Phosphorus solubilising microorganisms, Arbuscular Mucorrhizal Fungi (AMF), Silicate solubilising bacteria, Zinc

NIIR Project Consultancy Services (NPCS) 3/4
solubilising bacteria, Plant Growth Promoting Rhizobacteria (PGPR), Efficacy of PGPR in rice, Methods of application of Pseudomonas fluorescens in rice, Seedling root dip, Soil application, Foliar spray, Microbial consortium for rice

About NIIR

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

NIIR Project Consultancy Services (NPCS) 4/4