Google Search

Search

Already a Member ?


Bioplastics & Biodegradable Products Manufacturing Handbook (Bioplastic Carry Bags, Bio-PET, Bioplastic Drinking Straws, Corn and Rice Starch-Based Bioplastics, Food Packaging Applications, Cassava Bags, Biodegradable Tableware, Biodegradable Plates, Biod

New

Bioplastics & Biodegradable Products Manufacturing Handbook (Bioplastic Carry Bags, Bio-PET, Bioplastic Drinking Straws, Corn and Rice Starch-Based Bioplastics, Food Packaging Applications, Cassava Bags, Biodegradable Tableware, Biodegradable Plates, Biod

Author: P. K. Chattopadhyay
Format: Hardcover
ISBN: 9788195370122
Code: NI327
Pages: 448
Price: Rs. 1,575.00   US$ 150.00

Published: 2022
Publisher: Asia Pacific Business Press Inc.
Usually ships within 5 days



Add to Cart  Recommend to Friend   Download as PDF

Bioplastics & Biodegradable Products

Manufacturing Handbook



(Bioplastic Carry Bags, Bio-PET, Bio Plastic Drinking Straws, Corn and Rice Starch-Based Bio-Plastics, Food Packaging Applications, Cassava Bags, Biodegradable Tableware, Biodegradable Plates, Biodegradable Toilet Paper, Starch Based Biodegradable Plastics, Polylactic Acid (PLA))

Bioplastic is simply plastic that is created from a plant or other biological source rather than petroleum. It can be created by extracting sugar from plants like corn and sugarcane and converting it into polylactic acids (PLAs), or it can be made from microorganism-engineered polyhydroxyalkanoates (PHAs). Bioplastics are plastics made from renewable biomass sources such vegetable fats and oils, corn starch, straw, woodchips, sawdust, and recovered food waste, among others. Common plastics, such as fossil-fuel plastics (also known as petro-based polymers), on the other hand, are made from petroleum or natural gas.

Biodegradable Products Manufacturing (Bio-Products) are all types of natural and artificial products that can be easily decomposed without causing any damage to the environment. The significant examples of Biodegradable Products are Biodegradable Plastic, Biodegradable Airline Meals, Bio-degradable Toilet Paper, Biodegradable Cups etc. It has become the need of the hour to use these products as most of the goods like Plastics take many years to decompose in nature and this affects the environment adversely with time.

The worldwide bioplastics market is predicted to increase at a CAGR of 17.1 percent over the next five years. The packaging industry's rising product demand will propel the market even higher.

The book covers a wide range of topics connected to bioplastics and biodegradable products, as well as their manufacturing processes. It also includes contact information for machinery suppliers, as well as images of equipment and plant layout.

A comprehensive reference to manufacturing and entrepreneurship in the bioplastics and biodegradable products business. This book is a one-stop shop for everything you need to know about the bioplastics and biodegradable products manufacturing industry, which is ripe with potential for manufacturers, merchants, and entrepreneurs. This is the only comprehensive guide to commercial bioplastics and biodegradable products manufacture. It provides a feast of how-to knowledge, from concept through equipment purchase.

^ Top

Contents

Hide Down
INTRODUCTION

    1.1.   Biodegradable Plastics

            1.1.1.   Properties

            1.1.2.   Applications

    1.2.   Type of Biodegradable Plastics

    1.3.   Biodegradable Vs. Compostable

    1.4.   Bio-Based Plastics

            1.4.1.   Applications

            1.4.2.   Benefits of Bioplastics

    1.5.   Renewable Resources

            1.5.1.   Natural Polymers

            1.5.2.   Polysaccharides (Carbohydrates)

            1.5.3.   Proteins

            1.5.4.   Lignin

            1.5.5.   Natural Rubber

    1.6.   Other Biogenic Materials

            1.6.1.   Plant Oils

            1.6.2.   Monomers

2.   THE BIODEGRADABLE PLASTICS INDUSTRY

    2.1.   Applications

    2.2.   Economic and Social Development

    2.3.   Impact Factors on Bioplastic Demand

    2.4.   Specific Options for the Development of Bioplastics

            2.4.1.   Mobilizing Resources for Research and Development

            2.4.2.   Supporting Scaling Up Activities

            2.4.3.   Investing in Demonstrator Facilities

            2.4.4.   Alternative Uses for Feedstock

            2.4.5.   Agricultural Land Productivity

            2.4.6.   Alternative Cropping Systems

            2.4.7.   Public Procurement

            2.4.8.   Quotas

  2.4.9.     Subsidies and Taxes

            2.4.10.   Standards, Labels, and Consumer Awareness

3.   BIODEGRADABLE PLASTICS —DEVELOPMENTS AND ENVIRONMENTAL IMPACTS

    3.1.   Biodegradable

            3.1.1.   The ASTM Defines ‘Biodegradable’ as

    3.2.   Compostable

            3.2.1.   ‘Compostable’ is Defined by the ASTM as

            3.2.2.   Hydro-biodegradable and Photo-biodegradable

            3.2.3.   Bio-erodable

    3.3.   Biodegradable Starch-based Polymers

            3.3.1.   Thermoplastic Starch Products

            3.3.2.   Starch Synthetic Aliphatic Polyester Blends

            3.3.3.   Starch and PBS/PBSA Polyester Blends

            3.3.4.   Starch-PVOH Blends

    3.4.   Biodegradable Polyesters

            3.4.1.   PHA (Naturally Produced) Polyesters

            3.4.2.   PHBH (Naturally Produced) Polyesters

            3.4.3.   PLA (Renewable Resource) Polyesters

            3.4.4.   PCL (Synthetic Aliphatic) Polyesters

            3.4.5.   PBS (Synthetic Aliphatic) Polyesters

            3.4.6.   AAC Copolyesters

            3.4.7.   Modified PET

    3.5.   Other Degradable Polymers

    3.6.   Water Soluble Polymers

            3.6.1.   Polyvinyl Alcohol (PVOH)

            3.6.2.   Ethylene Vinyl Alcohol (EVOH)

    3.7.   Controlled Degradation Additive Masterbatches

    3.8.   Emerging Application Areas in Australia

    3.9.   Coated Paper

    3.10.   Agricultural Mulch Film

    3.11.   Shopping Bags

    3.12.   Food Waste Film and Bags

    3.13.   Consumer Packaging Materials

    3.14.   Landfill Cover Film

    3.15.   Other Applications

    3.16.   Standards and Test Methods

    3.17.   Biodegradation Standards and Tests



            3.17.1.   American Society for Testing and Materials

ASTM D5338-93 (Composting)

            3.17.3.   ASTM D5209-91 (Aerobic, Sewer Sludge)

            3.17.4.   ASTM D5210-92 (Anaerobic, Sewage Sludge)

            3.17.5.   ASTM D5511-94 (High-solids Anaerobic Digestion)

            3.17.6.   ASTM Tests for Specific Disposal Environments

            3.17.7.   International Standards Research

            3.17.8.   International Standards Organisation

            3.17.9.   European Committee for Normalisation

            3.17.10. ‘OK Compost’ Certification and Logo

            3.17.11. Compost Toxicity Tests

            3.17.12. Plant Phytotoxicity Testing

            3.17.13. Animal Toxicity Test

            3.17.14. Difference Between Standards for Biodegradation

            3.17.15. Development of Australian Standards

            3.17.16. Disposal Environments

            3.17.17. Composting Facilities and Soil Burial

            3.17.18. Key Factors Defining Compostability

            3.17.19. Physical Persistence

            3.17.20. Chemical Persistence

            3.17.21. Toxicity

            3.17.22. Effect on Quality of Compost

            3.17.23. Anaerobic Digestion

            3.17.24. Waste Water Treatment Plants

            3.17.25. Reprocessing Facilities

            3.17.26. Landfills

            3.17.27. Marine and Freshwater Environments

            3.17.28. Litter

    3.18.   Plastics Sorting and Reprocessing

            3.18.1.   Key Issues

            3.18.2.   Recyclable Plastics Sorting Considerations

            3.18.3.   Reprocessing Considerations

            3.18.4.   Polyolefin Reprocessing

            3.18.5.   Polyethylene Reprocessing

    3.19.   Potential Positive Environment Impacts

            3.19.1.   Composting

            3.19.2.   Landfill Degradation

            3.19.3.   Energy Use

            3.19.4.   Greenhouse Gas Emissions

    3.20.   Potential Negative Enviornment Impact

            3.20.1.   Pollution of Aquatic Environments

                    3.20.1.1. Increased Aquatic BOD

                    3.20.1.2. Water Transportable Degradation Products

                    3.20.1.3. Risk to Marine Species

            3.20.2.   Litter

            3.20.3.   Compost Toxicity

            3.20.4.   Recalcitrant Residues

                    3.20.4.1. Aromatic Compounds

            3.20.5.   Addigtives and Modifiers

                    3.20.5.1. Isocyanate Coupling Agents

                    3.20.5.2. Plasticisers

                    3.20.5.3. Fillers

                    3.20.5.4. Catalyst Residues

            3.20.6.   Prodegradants and Other Additives

            3.20.7.   Source of Raw Materials

    3.21.   Development of Australian Standards and Testing

            3.21.1.   Life-Cycle Assessment

            3.21.2.   Minimisation of Impact on Reprocessing

            3.21.3.   Determination of Appropriate Disposal Environments

            3.21.4.   Education

    3.22.   Conclusions

            3.22.1.   Identify standards and test methods for biodegradable plastics in Australia

    3.23.   Appendix A

4.   BIOPLASTIC CARRY BAGS

    4.1.   A Climate-Friendly Brand

    4.2.   Main Applications

    4.3.   Reduce CO2 Emission with Bioplastics

    4.4.   Which Biobag to Choose?

    4.5.   Types of Bio Bag

    4.6.   Bio-Recyclable Bags can be Used to Create New Bags

    4.7.   Bio-Recyclable Bags do not Pollute the Recycling Process

    4.8.   Bio-Compostable Bags Break Down into Humus

            4.8.1.   Polyethylene (PE)

            4.8.2.   Polylactic Acid (PLA)

            4.8.3.   Thermoplastic Starch (TPS)

    4.9.   Bioplastics

            4.9.1.   Manufacturing Process

            4.9.2.   Recyclability of Plastic Materials

            4.9.3.   How Recycling Improvements Affect the Manufacturer

5.   BIO-PET

    5.1.   Bio-PET as a Replacement for Virgin PET

    5.2.   Biodegradable Plastics

    5.3.   Biopolymer Plastic

    5.4.   Why is Bio-based Polyester Important?

    5.5.   The Benefits of Biopolymer Bottles

    5.6.   Biopolymer Bottle Types

    5.7.   Bottle-to-bottle Recycling

6.   BIO PLASTIC DRINKING STRAWS

    6.1.   Types of Biodegradable Plastic Straws

            6.1.1.   Wheat Straws

            6.1.2.   Bamboo Straws

            6.1.3.   The Truth of Sugarcane Bagasse

            6.1.4.   Rice Straw

    6.2.   Technology Process

            6.2.1.   Pulp Bleaching Process

            6.2.2.   Pulp Washing Process

            6.2.3.   Pulp Cooking Process

            6.2.4.   Chemi-Mechanical Pulping

7.   FOOD PACKAGING APPLICATIONS

    7.1.   Biobased Packaging Materials

    7.2.   Polymers Produced from Biomass

    7.3.   Polymers from Bio-derived Monomers

    7.4.   Polymers Produced from Micro-Organisms

    7.5.   Properties of Packaging Materials

            7.5.1.   Gas Barrier Properties

            7.5.2.   Moisture Barrier Properties

            7.5.3.   Mechanical and Thermal Properties

    7.6.   Biodegradability

            7.6.1.   Packaging Products from Bio based Materials

8.   POLYVINYL MODIFIED GUAR-GUM BIOPLASTICS

    8.1.   Introduction

    8.2.   Modification of Guar Gum

    8.3.   Derivatization of Functional Groups

    8.4.   PVS Modified Guar Gum

    8.5.   Characterization

9.   CORN AND RICE STARCH-BASED BIO-PLASTICS

    9.1.   Introduction

    9.2.   Materials and Methods

    9.3.   Extraction of Starch

    9.4.   Preparation of Bioplastics Film

    9.5.   Characterization

            9.5.1.   Tensile Test

            9.5.2.   Thickness Measurement

            9.5.3.   Test for Moisture Content

            9.5.4.   Water Solubility Test

            9.5.5.   Water Contact Angle Measurement

            9.5.6.   Biodegradability Test

            9.5.7.   Scanning Electron Microscopy (SEM)

            9.5.8.   Thermogravimetric Analysis

            9.5.9.   Sealing Properties of Bioplastics

10.   BIOPLASTICS PROCESSING OF DRY INGREDIENTS

    10.1.   Introduction

            10.1.1.   Ingredient Properties Affecting Feedrates and Dry Ingredients Handling

            10.1.2.   Storage Hoppers and Ingredient Activation

            10.1.3.   Volumetric Feeders

            10.1.4.   Vibrating Tray Feeders

            10.1.5.   Belt Feeders

            10.1.6.   Loss-in-Weight Feeders

    10.2.   Start with a Traditional Feeding Device, Example a Screw Feeder

11.   BIOPLASTICS – END-OF-LIFE OPTIONS

    11.1.   Recycling

            11.1.1.   Mechanical Recycling of Bioplastics

    11.2.   Renewable Energy Recovery (incineration)

    11.3.   Feedstock Recovery or Chemical Recycling

    11.4.   Compost/Biodegradation

            11.4.1.   Biodegradable

    11.5.   Anaerobic Digestion

            11.5.1.   Energy Recovery

    11.6.   Communicating End-of-Life Options

12.   CASSAVA BAGS

    12.1.   Manufacturing Process

    12.2.   Types of Cassava Bags

13.   PLASTICS FROM POTATO WASTE

    13.1.   Begin Insert

    13.2.   Plastics From Potato Waste

    13.3.   Starch to Glucose to Lactic Acid

    13.4.   Lactic Acid into Plastic

    13.5.   Potential Markets

14.   BIODEGRADABLE SYNTHETIC POLYMERS

    14.1.   Formula of the Product

    14.2.   Introduction

    14.3.   Objective of the Present Invention

    14.4.   Preferred Embodiments

    14.5.   Claims

    14.6.   Conclusion

15.   BIODEGRADABLE PLASTICS FROM RENEWABLE SOURCES

    15.1.   Analysis

    15.2.   Plastics and the Environment

    15.3.   The Move to Renewable Sources

    15.4.   Extending the Recycling Loop

    15.5.   Biopolymers, Conventional Plastics and Biodegradable Plastics

    15.6.   The Plastics Sector

    15.7.   Packaging

    15.8.   Plastic Films

    15.9.   Structure of the Business

    15.10. Recent Developments

    15.11. Biodegradability and Compostability

    15.12. Challenges Ahead

16.   BIODEGRADABLE PLASTICS FROM WHEAT STARCH AND POLYLACTIC ACID (PLA)

    16.1.   Introduction and Background

    16.2.   Results from Previous Funding

    16.3.   Rational and Significance

    16.4.   Procedures/Methodology

    16.5.   Other Related Works

17.   STARCH BASED BIODEGRADABLE PLASTICS

    17.1.   Introduction

    17.2.   Technology Commercialization Model

            17.2.1.   Application of Technology Commercialization Model

    17.3.   Starch-based Biodegradable Plastics – Commercialization Case Studies

    17.4.   Conclusion

18.   BIO-NANOCOMPOSITES FOR PACKAGING APPLICATIONS

    18.1.   Structure of Nano Composites Based on Natural Nano Fillers

            18.1.1.   Layered Silicate Filled Nano Composites

            18.1.2.   Cellulose Nanoparticles Filled Nano Composites

            18.1.3.   Starch Nano Crystals Filled Nano Composites

    18.2.   Properties of Bio-Nano Composites

            18.2.1.   PLA Based Bio-Nano Composites

            18.2.2.   Mechanical Properties

            18.2.3.   Barrier Properties

    18.3.   Starch Based Nano Composites

            18.3.1.   Elaboration Processes

            18.3.2.   Effect of the Surfactant and Plasticizer on the Structure

            18.3.3.   Mechanical Properties

    18.4.   Optical Properties

    18.5.   PHA Based Bio-Nano Composites

    18.6.   Proteins Based Nanocomposites

19.   POLYHYDROXYALKANOATES (PHAS)

    19.1.   What are the General Characteristics of PHAs?

    19.2.   What are the Benefits of Bioplastics and PHAs in Particular?

    19.3.   What Applications have Utilized or can Utilize PHAs?

    19.4.   Materials and Methods

            19.4.1.   Reagents Preparation

            19.4.2.   Media Preparation

            19.4.3.   Sample Collection

            19.4.4.   Waste Collection

            19.4.5.   Isolation and Screening

            19.4.6.   Submerged Fermentation for PHA Production

            19.4.7.   Extraction of PHA Produced during Fermentation

            19.4.8.   Quantification of Produced PHA

            19.4.9.   Characterization of the Extracted PHA by FTIR

            19.4.10. Molecular Identification of the Most Efficient PHA Producing Strain

            19.4.11. Optimization of Cultural Conditions

            19.4.12. PHA Film Preparation

            19.4.13. Statistical Analysis

20.   POLYLACTIC ACID (PLA)

    20.1.   Introduction

            20.1.1.   PLA Film

            20.1.2.   PLA Trays and Other Thermoformed Products

            20.1.3.   PLA Bottles

            20.1.4.   Other Packaging Products

    20.2.   (Biodegradable) Starch based Plastics

            20.2.1.   Starch based Films

            20.2.2.   Starch based Trays and Other Thermoformed Products

            20.2.3.   Other Packaging Products

    20.3.   Cellophane Films

    20.4.   Biodegradable (and bio-based) Polyesters

            20.4.1.   Flexible Films based on Biodegradable Polyesters

            20.4.2.   Trays and Other Thermoformed Products

            20.4.3.   Other Packaging Products

    20.5.   Manufacture of Polylactic Acids

    20.6.   Influence of Optical Composition

21.   BIODEGRADABLE TABLEWARE

    21.1.   Sugarcane Bagasse

            21.1.1.   Characteristics

            21.1.2.   Advantages

            21.1.3.   Manufacturing Process

    21.2.   Cornstarch Tableware

            21.2.1.   Advantages

    21.3.   Bamboo Tableware

            21.3.1.   Features

            21.3.2.   Making Disposable Bamboo Tableware

            21.3.3.   Durable or Reusable

            21.3.4.   Benefits

    21.4.   Palm Leaf Tableware

            21.4.1.   Features

            21.4.2.   Eco-friendly

            21.4.3.   Manufacturing Process

22.   BIODEGRADABLE PLATES

    22.1.   Characteristics of Bagasse Products

    22.2.   Benefits of Using Biodegradable Plates

            22.2.1.   Saves Non-renewable Sources of Energy

            22.2.2.   Reduces Carbon Emission

            22.2.3.   Consumes Less Energy

            22.2.4.   Provides an Eco-Friendly Solution

    22.3.   Various Types of Disposable Plates

    22.4.   Disposable Bamboo Plates

    22.5.   Palm Leaf Plates

    22.6.   Bagasse Plates/ Sugarcane Plates

            22.6.1.   What is Bagasse? How is it used to Make Plates and Bowls?

    22.7.   Manufacturing Stages

            22.7.1.   Pulping

            22.7.2.   Forming

            22.7.3.   Shaping and Drying

            22.7.4.   Edge cutting and Sterilization

            22.7.5.   Packaging

23.   BIODEGRADABLE TOILET PAPER

    23.1.   Types

24.   BIODEGRADABLE POLYOLEFINS

    24.1.   Introduction

            24.1.1.   Results and Discussion

            24.1.2.   General Procedure for Grafting of Sugars onto Poly (styrene Maleic Anhydride)

            24.1.3.   Determination of Biodegradability of Polymers Using Aerobic Microorganisms

    24.2.   Supplementary Data

            24.2.1.   Weight Loss Data

            24.2.2.   FTIR Spectral Data

            24.2.3.   Use of Colorimetry for Determination of the Sugar Content in the Poly (styrene Maleic Anhydride) Linked with Glucose: The Phenol-Sulfuric Acid Reaction Method

            24.2.4.   Quantification of Carbohydrate Groups Linked to Poly(styrene-Maleic Anhydride) by Silylation of the Carbohydrate Hydroxyl’s and NMR Anlysis of the Spectrum

            24.2.5.   Molecular Weight Decrease After Biodegradation by GPC

            24.2.6.   Mechanism of Reaction of Poly(styrene Maleic Anhydride) with the Sugar

25.   STARCH FOR PACKAGING APPLICATIONS

    25.1.   Introduction

    25.2.   Bioplastic as Packaging Material

            25.2.1.   Why Use Starch as Packaging Material?

    25.3.   Characteristics of a Good Packaging Material

    25.4.   Recent Advances in Starch Based Composites for Packaging Applications

    25.5.   Plasticized Starch and Fiber Reinforced Composites for Packaging Applications

    25.6.   Protein-Starch Based Plastic Produced by Extrusion and Injection Molding

    25.7.   Starch-based Completely Biodegradable Polymer Materials

            25.7.1.   Starch: The Future of Sustainable Packaging

26.   PLANT LAYOUT AND PROCESS FLOW CHART & DIAGRAM

27.   PHOTOGRAPHS OF MACHINERY WITHSUPPLIER’S CONTACT DETAILS

    27.1.   Bio Degradable Bag Machine

    27.2.   Corn Starch Biodegradable Bag Machine

    27.3.   Biodegradable Compostable Bags Machine

    27.4.   Biodegradable Carry Bag Cutting and Sealing Machine

    27.5.   Biodegradable Carry Bag Machine

    27.6.   Biodegradable Plastic Film Machine

    27.7.   Blown Film Machine

    27.8.   Areca Leaf Plate Machine

    27.9.   Betel Leaf Plate Machine

    27.10. Areca Food Container Machine

    27.11. Bagasse Tableware Pulp Molding Machine

    27.12. Pulp Molded Tableware Machinery

    27.13. Eggs Pulp Tray Machine

    28.14. Biodegradable Pulp Cup Rotary Machine

        29.15. Biodegradable Paper Straw Making Machine

^ Top


blog comments powered by Disqus

Post   Reviews

Please Sign In to post reviews and comments about this product.

About NIIR PROJECT CONSULTANCY SERVICES

Hide Down

NIIR PROJECT CONSULTANCY SERVICES (NPCS) is a reliable name in the industrial world for offering integrated technical consultancy services. NPCS is manned by engineers, planners, specialists, financial experts, economic analysts and design specialists with extensive experience in the related industries.

Our various services are: Detailed Project Report, Business Plan for Manufacturing Plant, Start-up Ideas, Business Ideas for Entrepreneurs, Start up Business Opportunities, entrepreneurship projects, Successful Business Plan, Industry Trends, Market Research, Manufacturing Process, Machinery, Raw Materials, project report, Cost and Revenue, Pre-feasibility study for Profitable Manufacturing Business, Project Identification, Project Feasibility and Market Study, Identification of Profitable Industrial Project Opportunities, Business Opportunities, Investment Opportunities for Most Profitable Business in India, Manufacturing Business Ideas, Preparation of Project Profile, Pre-Investment and Pre-Feasibility Study, Market Research Study, Preparation of Techno-Economic Feasibility Report, Identification and Selection of Plant, Process, Equipment, General Guidance, Startup Help, Technical and Commercial Counseling for setting up new industrial project and Most Profitable Small Scale Business.

NPCS also publishes varies process technology, technical, reference, self employment and startup books, directory, business and industry database, bankable detailed project report, market research report on various industries, small scale industry and profit making business. Besides being used by manufacturers, industrialists and entrepreneurs, our publications are also used by professionals including project engineers, information services bureau, consultants and project consultancy firms as one of the input in their research.

^ Top