Phenolic Resins
Production Business.
Phenol-Formaldehyde Resins Manufacturing Industry
www.entrepreneurindia.co
Introduction

Phenolic resins or phenol-formaldehyde resins are the synthetic polymers obtained by the polymerization of phenol and formaldehyde. Phenolic resins possess good physical and chemical properties such as high mechanical strength, low toxicity, good heat resistance, low smoke formation and high thermal stability.
Due to such high properties, phenolic resins find their applications in myriad industrial products. From molded products such as billiard balls to coatings and adhesives, phenolic resins are used for different applications across various industries such as automotive, electrical & electronics, construction etc. Besides, by mixing phenolic resins with other polymer, they can also be used in applications like corrosion coating, adhesive, etc.
Uses or Application:

Phenol formaldehyde have so many uses in different industry. Phenolic resins are mainly used in the circuit board production that is for making circuit board like PCB. In Electrical equipment also it is needed, caps, handles, buttons, radio cabinets, furniture, knobs, vacuum cleaner, cameras, ash trays, engine ignition equipment. It is also used in Laminated Material like Laminated sheets, rods and tubes are made in great variety from fabric, paper, wood veneers etc. impregnated with phenolic, resins providing a range of materials of widely differing properties.

Phenol Resins are also used for moulding objects which can be insulating and heat-resistant.
In that case various fillers are added such as fabric, fibres and flakes. Some uses are heat resistant appliance handles, distributor caps and brake linings. Snooker balls and circuit boards are other phenolic resin products.

Besides being used in coatings for interiors of food and beverage cans, phenolic resins are an excellent choice for manufacturing protective coatings and for enhancing the performance of epoxy, acrylic, polyester and alkyd based adhesive or coating products. They are, for example, used for tank, drum, and pipe linings; marine and industrial applications; and electrical devices such as wires, motor and wound coils.
Market Outlook

The global phenolic resins market size was valued at USD 11.17 billion in 2018 and is expected to expand at a CAGR of 5.3% over the forecast period, 2019 to 2025. Phenol-Formaldehyde is the scientific name for phenolic resin and being a thermosetting plastic finds growing use in wide choice of applications. The uses vary from molding compounds, forest products and abrasives that comprises the major applications for phenolic resins.

Construction, automotive, furniture and electrical & electronics industry are the major end-use sectors for phenolic resins. The holistic growth in these industries is expected to drive the demand for phenolic resins in the global market.
Phenolic resins find their huge application in different wood products, which is majorly driven by the construction industry growth.

Based on the end-user type, the market is categorized as automotive, building & construction, furniture, electrical & electronics, industrial, and others. The automotive industry currently dominates the market and is expected to maintain its dominance over the next five years as well, owing to consistently increasing production of vehicles along with an increasing number of phenolic resin applications, such brake linings, clutch facing, and brake pads.
U.S. Phenolic Resin Market Size, By Product, 2019-2025 (USD Billion)
Based on the resin type, the market is segmented as resol resin, novolac resin, and others. Resol resin currently dominates the phenolic resin market, owing to its widespread usage in the wood adhesive application. Further, the resin type is also expected to witness the highest growth during the forecast period, owing to its excellent properties including superior heat resistance, high flexibility, mechanical strength, moldability, and excellent friction properties.
Phenolic resins are primarily made from synthetic polymers which are opposed by the governing bodies in most part of the world. This is because the polymers pose a serious threat to the wildlife and environment. The stringent environmental regulations regarding the usage of plastic for commercial application is estimated to restrict the growth of global phenolic resins market throughout the forecast period. Nevertheless, the rising need for fuel-efficient and lightweight vehicles and the increasing adoption of nanotechnology are expected to offer promising growth opportunities for the market players.
Phenolic Resin Market Revenue, By Region, 2015-2026 (USD Billion)
The leading market players in the global phenolic resins market primarily include Hitachi Chemical, Kolon Industries, BASF, Mitsui Chemicals, DIC Corporation, SI Group, Georgia Pacific Chemicals, Sumitomo Bakelite and others.
About the Book:

Author: NPCS Board of Consultants & Engineers

ISBN: 9789381039977

Book Code: NI197

Pages: 624

Indian Price: 1,895/-

US$: 150-

Publisher: Niir Project Consultancy Services
Phenolic resins, also known as phenol–formaldehyde resins, are synthetic polymers that are produced from the reaction of phenol or substituted phenol with formaldehyde at high temperatures. These are widely used in wood adhesives, molding compounds, and laminates. The resins are flame-retardant, demonstrate high heat resistance, high tensile strength, and low toxicity, and generate low smoke. In the report, the phenolic resins market is segmented on the basis of product type, application, and region.

Phenolic Resin Market size estimated to reach at USD 19.13 billion in 2026. Alongside, the market is anticipated to grow at a CAGR of 5.4% during the forecast period. The global phenolic resins market has experienced a notable growth and it has been projected that the global market will see stable growth during the forecast period.
The high mechanical strengths, low toxicity, heat resistance, low smoke and other several properties has made the phenolic resins to make their use in the applications such as in laminations, wood adhesives, molding compound, construction, automobile and others. Growing demand of these applications has increased the production of phenolic resins to meet the current market demand. Also, phenolic resins is used in flame retardant which is very crucial for automobiles and aircrafts.
This book basically deals with general reaction of phenols with aldehydes, the resoles, curing stages of resoles, kinetics of a stage reaction, chemistry of curing reactions, kinetics of the curing reaction, the novolacs, decomposition products of resites, acid cured resites, composition of technical resites, mechanisms of rubber vulcanization with phenolic resins, thermosetting alloy adhesives, vinyl phenolic structural adhesives, nitrile phenolic structural adhesives, phenolic resins in contact adhesives, chloroprene phenolic contact adhesives, nitrile phenolic contact adhesives, phenolic resins in pressure sensitive adhesives, rubber reinforcing resins, resorcinol formaldehyde latex systems, phenolic resin chemistry, bio-based phenolic resins, flexibilization of phenolic resins, floral foam (Phenolic Foam) with resin manufacturing, lignin-based phenol formaldehyde (LPF) resins, phenol formaldehyde resin, alkaline phenol formaldehyde resin,
furfuryl alcohol phenol urea formaldehyde resin, phenol formaldehyde resin (Shell Sand Resin), phenol formaldehyde resin (Cold Box Resin), effluent treatment plant, standards and legislation, marketing of thermoset resins, process flow sheet, sample plant layout and photographs of machinery with supplier’s contact details.

A total guide of phenolic resins and entrepreneurial success in one of today's most lucrative resin industry. This book is one-stop guide to one of the fastest growing sectors, where opportunities abound for manufacturers, retailers, and entrepreneurs. This is the only complete handbook on Phenolic resins.
Table of Contents

1. **HISTORICAL DEVELOPMENT OF PHENOLIC RESINS**

2. **RAW MATERIALS**

3. **CHEMICAL STRUCTURE**
 General Reaction of Phenols with Aldehydes, The Resoles, Curing Stages of Resoles, Kinetics of A-Stage Reaction, Chemistry of Curing Reactions, Kinetics of the Curing Reaction, The Novolacs, Decomposition Products of Resites, Acid-Cured Resites, Composition of Technical Resites

4. **PHENOLIC RESINS FROM HIGHER ALDEHYDES**
 Acetaldehyde, Butyraldehyde, Chloral, Furfural, Acrolein

5. **PHENOLIC RESINS FROM POLYHYDRIC PHENOLS**

6. **REACTION MECHANISMS**

7. THE PHYSICAL STRUCTURE OF PHENOLIC RESINS

8. RESIN PRODUCTION

9. FILLERS FOR PHENOLIC RESIN MOULDING POWDERS
Types of Filler, Effect of Filler on Impact Strength and Damping, Microscopic Structure of Fillers, Ratio of Resin to Filler, Standard Classification of Phenoplast Molding Powder According to Filler, Properties of Individual Fillers, Cellulose Derivatives, Wood Flour, Walnut-Shell Flour, Cottonseed Hulls, Cellulosic Fibers, Textile By-Products, Proteinaceous Fillers, Carbon Fillers, Mineral Fillers

10. FILLERS AND RESINS FOR LAMINATES
Classification of Laminates, Laminated Phenolic Sheets, Laminated Phenolic Tubes (NEMA Classification), High Strength Paper Laminates, Plastic Bonded Cotton Fiber, Glass Fabric Filler, Resins used for Laminates

11 PHYSIOLOGY AND ENVIRONMENTAL PROTECTION
12. DEGRADATION OF PHENOLIC RESINS BY HEAT, OXYGEN AND HIGH ENERGY RADIATION
Thermal Degradation, Oxidation Reactions, Degradation by High Energy Radiation

13. MECHANICAL PROPERTIES OF MOLDED PHENOLIC RESINS

14. MECHANICAL PROPERTIES OF LAMINATED PHENOLIC RESINS

15. MODIFIED AND THERMAL-RESISTANT RESINS
Etherification Reactions, Esterification Reaction, Boron-Modified Resins, Silicon-Modified Resins, Phosphorus-Modified Resins, Heavy Metal-Modified Resins, Nitrogen-Modified Resins, Sulfur-Modified Resins
16. **COMPOSITE WOOD MATERIALS**

17. **MOULDING COMPOUNDS**
Standardization and Minimum Properties, Composition of Molding Powders, Resins, Fillers, Reinforcements and Additives, Wood Flour and Cellulose Fibers, Asbestos, Mineral Flour, Other Fillers and Fibers, Colorants, Lubricants and Release Agents, Production of Molding Powders, Thermoset Flow, Manufacturing of Molded Parts, Compression Molding, Transfer Molding, Injection Molding, Selected Properties, Thermal Resistance, Shrinkage and Post-Mold Shrinkage, Thermal Expansion

18. **HEAT AND SOUND INSULATION MATERIALS**

19. **THERMAL PROPERTIES OF PHENOLIC RESINS**
Introduction, Coefficient of Expansion, Flame Resistance

20. **CHEMICAL RESISTANCE OF PHENOLIC RESINS**
Introduction, Water Absorption, Effect of Reagents, Chemical Applications for Phenoplasts, Resistance to Microorganisms
21. **OIL SOLUBLE PHENOLIC RESINS**
Introduction, Pure Oil-Soluble Phenoplasts, The Modified Phenoplasts, Reactions of the Phenoplasts with Oils

22. **FRICITION MATERIALS**

23. **PHENOLIC RESINS IN RUBBERS AND ADHESIVES**

24. **PHENOLIC ANTIOXIDANTS**

25. **OTHER APPLICATIONS**
Carbon and Graphite Materials, Phenolics for Chemical Equipment, Phenolic Resin/Fiber Composites, Phenolic Resin Fibers, Blast Furnace Taphole Mixes, Photo-Resists, Socket Putties, Brush Putties, Tannins, Ion-Exchange-Resins, Casting Resins

26. **TECHNICAL MANUFACTURE OF PHENOLIC RESINS**
Resin Manufacture, Cast Resins, Resin Varnishes, Resin Compound, Molding Powder, Phenoplast Molding Laminates
27. **MOULDING TECHNIQUE FOR PHENOLIC RESINS**
Introduction, Compression Molding, Transfer Molding, Injection Molding, Molding Practice, Preheating

28. **MISCELLANEOUS TECHNICAL APPLICATIONS OF PHENOLIC RESINS**

29. **FOUNDRY RESINS**

30. **PHENOLIC RESIN CHEMISTRY**
Resoles Chemistry
Novolacs Chemistry
Manufacturing Plant and Procedure
Properties

31. **BIO-BASED PHENOLIC RESINS**
Tannin

32. **FLEXIBILIZATION OF PHENOLIC**
Tests Performed on Unmodified Phenolic Resin
Physical-Mechanical Characteristics
IR-Tests
NMR-Tests
33. FLORAL FOAM (PHENOLIC FOAM) WITH RESIN MANUFACTURING
When Working with Floral Foams
Types of Floral Foam
Wet Foam
Liquid Foam Process
Dry Foam
Foam Ingredients
Dry Hard Foam Process
Color Foam
Products
Foam Brick
Foam Dome
Properties of Floral Foam
Manufacturing Process
Resol Resin Preparation
Floral Foam Production
Process Flow Diagram

34. LIGNIN-BASED PHENOL FORMALDEHYDE (LPF) RESINS
Lignin
Lignin Modification Techniques
Methylation and Phenolation
Lignin Thermolysis Techniques
Pyrolysis
Hydrogenolysis
Oxidation
Hydrolysis
35. **PHENOL FORMALDEHYDE RESIN**

Phenol Formaldehyde Resin
PF Resole Synthesis
Properties
Physical Properties
Chemical Properties
1. Overview of PF Cure
2. Action of Heat
3. Action of Acids
4. Stability
5. Toxicity
6. Ecological Effects
7. Flammability
Applications

Manufacture of Phenol Formaldehyde Resin Using Alkaline Catalyst
Manufacture of Phenol Formaldehyde Resin Using Acid Catalyst

Process
Step: 1
Step: 2
Overall Reaction
Manufacturing Process
Technology
Pollution Potential
PF Resole Synthesis and Curing
PF Synthesis and Curing Parameters

36. **ALKALINE PHENOL FORMALDEHYDE RESIN**
37. **FURFURYL ALCOHOL PHENOL UREA FORMALDEHYDE RESIN**
 - Manufacturing Process
 - Material Balance
 - Reaction Chemistry
 - Process Flow Diagram

38. **PHENOL FORMALDEHYDE RESIN (SHELL SAND RESIN)**
 - Manufacturing Process
 - Material Balance
 - Reaction Chemistry
 - Process Flow Diagram

39. **PHENOL FORMALDEHYDE RESIN (COLD BOX RESIN)**
 - Manufacturing Process
 - Material Balance
 - Reaction Chemistry
 - Process Flow Diagram
 - List of Equipments
 - List of Major Raw Materials

40. **EFFLUENT TREATMENT PLANT**
41. **STANDARDS AND LEGISLATION**

Standards
British Standards Relating to Thermosets
British/European Norm Standards Relating to Thermosets
British/European/International Standards Relevant to Thermosets

42. **MARKETING OF THERMOSET RESINS**

Acrylics
Alkyds
Amino Resins
Bismaleimides
Epoxy
Furane
Hybrids
Phenolics
Polyimides
Unsaturated Polyester
Polyurethanes
Vinyl Esters
Transport
Environment and Recycling

43. **PROCESS FLOW DIAGRAM**
44. **SAMPLE PLANT LAYOUT**

45. **MACHINERY SUPPLIERS FOR PHENOLIC RESIN**

- Distillation Column
- Vertical & Horizontal Condenser
- Chemical Storage Tank
- Jacketed Reactor
- Chemical Process Reactor
- Stainless Steel Mixing Vessel/Mixing Tank
- Fractional Distillation Column
- Oil Water Separators
- Chemical Storage Tank
- Chemical Reactor
- Reaction Vessel
- Heat Exchanger
- Jacketed reaction Vessel
- Reaction Kettle
- Blending Tank
- Buffer Tank
- Condenser
- Boiler
- Resin Kettle
- Weighing Machine
- Resin Storage Tank
- Distillation Column
- High Speed Disperser
- Double Cone Blender
- Jacketed Reactor
Tags

See more

https://goo.gl/mS9ByC
https://goo.gl/CKYJqG
https://goo.gl/jsFetG
https://goo.gl/CJxg2G
Contact us

NIIR PROJECT CONSULTANCY SERVICES
106-E, Kamla Nagar, Opp. Spark Mall,
New Delhi-110007, India.
Email: pcs.ei@gmail.com, info@entrepreneurindia.co
Tel: +91-11-23843955, 23845654, 23845886, 8800733955
Mobile: +91-9811043595
Fax: +91-11-23845886
Website: www.entrepreneurindia.co, www.niir.org
Take a look at NIIR PROJECT CONSULTANCY SERVICES on StreetView
https://goo.gl/VstWkd
Follow us

- https://www.linkedin.com/company/niir-project-consultancy-services
- https://www.facebook.com/NIIR.ORG
- https://www.youtube.com/user/NIIRproject
- https://plus.google.com/+EntrepreneurIndiaNewDelhi
- https://twitter.com/npcs_in
- https://www.pinterest.com/npcsindia/
For more information, visit us at:

www.niir.org
www.entrepreneurindia.co