Bioplastics & Biodegradable Products Manufacturing Handbook

A Comprehensive Guide to Manufacturing Bioplastic products

Bioplastics & Biodegradable Products

You will understand full concept about Biodegradable Products with the help of book Bioplastics & Biodegradable Products Manufacturing Handbook (Bioplastic Carry Bags, Bio-PET, Bio Plastic Drinking Straws, Corn and Rice Starch-Based Bio-Plastics, Food Packaging Applications, Cassava Bags, Biodegradable Tableware, Biodegradable Plates, Biodegradable Toilet Paper, Starch Based Biodegradable Plastics, Polylactic Acid (PLA)) that we are explaining here. So, stay tuned till the end to get the most information and details on how to buy the book.

Bioplastic is simply plastic that is created from a plant or other biological source rather than petroleum. It can be created by extracting sugar from plants like corn and sugarcane and converting it into polylactic acids (PLAs), or it can be made from microorganism-engineered polyhydroxyalkanoates (PHAs).

Bioplastics are plastics made from renewable biomass sources such vegetable fats and oils, corn starch, straw, woodchips, sawdust, and recovered food waste, among others. Common plastics, such as fossil-fuel plastics (also known as petro-based polymers), on the other hand, are made from petroleum or natural gas. 

Biodegradable Products Manufacturing (Bio-Products) are all types of natural and artificial products that can be easily decomposed without causing any damage to the environment. The significant examples of Biodegradable Products are Biodegradable Plastic, Biodegradable Airline Meals, Bio-degradable Toilet Paper, Biodegradable Cups etc. It has become the need of the hour to use these products as most of the goods like Plastics take many years to decompose in nature and this affects the environment adversely with time.

 

Start a Business in Biodegradable Products Industry, Click Here

 

You will cover some topics in this handbook:-

  1. INTRODUCTION

1.1.     Biodegradable Plastics

1.1.1.     Properties

1.1.2.     Applications

1.2.     Type of Biodegradable Plastics

1.3.     Biodegradable Vs. Compostable

1.4.     Bio-Based Plastics

1.4.1.     Applications

1.4.2.     Benefits of Bioplastics

1.5.     Renewable Resources

1.5.1.     Natural Polymers

1.5.2.     Polysaccharides (Carbohydrates)

1.5.3.     Proteins

1.5.4.     Lignin

1.5.5.     Natural Rubber

1.6.     Other Biogenic Materials

1.6.1.     Plant Oils

1.6.2.     Monomers

  1. THE BIODEGRADABLE PLASTICS INDUSTRY

2.1.     Applications

2.2.     Economic and Social Development

2.3.     Impact Factors on Bioplastic Demand

2.4.     Specific Options for the Development of Bioplastics

2.4.1.     Mobilizing Resources for Research and Development

2.4.2.     Supporting Scaling Up Activities

2.4.3.     Investing in Demonstrator Facilities

2.4.4.     Alternative Uses for Feedstock

2.4.5.     Agricultural Land Productivity

2.4.6.     Alternative Cropping Systems

2.4.7.     Public Procurement

2.4.8.     Quotas

2.4.9.     Subsidies and Taxes

2.4.10.   Standards, Labels, and Consumer Awareness

  1. BIODEGRADABLE PLASTICS —DEVELOPMENTS AND ENVIRONMENTAL IMPACTS

3.1.     Biodegradable

3.1.1.     The ASTM Defines ‘Biodegradable’ as

3.2.     Compostable

3.2.1.     ‘Compostable’ is Defined by the ASTM as

3.2.2.     Hydro-biodegradable and Photo-biodegradable

3.2.3.     Bio-erodable

3.3.     Biodegradable Starch-based Polymers

3.3.1.     Thermoplastic Starch Products

3.3.2.     Starch Synthetic Aliphatic Polyester Blends

3.3.3.     Starch and PBS/PBSA Polyester Blends

3.3.4.     Starch-PVOH Blends

3.4.     Biodegradable Polyesters

3.4.1.     PHA (Naturally Produced) Polyesters

3.4.2.     PHBH (Naturally Produced) Polyesters

3.4.3.     PLA (Renewable Resource) Polyesters

3.4.4.     PCL (Synthetic Aliphatic) Polyesters

3.4.5.     PBS (Synthetic Aliphatic) Polyesters

3.4.6.     AAC Copolyesters

3.4.7.     Modified PET

3.5.     Other Degradable Polymers

3.6.     Water Soluble Polymers

3.6.1.     Polyvinyl Alcohol (PVOH)

3.6.2.     Ethylene Vinyl Alcohol (EVOH)

3.7.     Controlled Degradation Additive Masterbatches

3.8.     Emerging Application Areas in Australia

3.9.     Coated Paper

3.10.   Agricultural Mulch Film

3.11.   Shopping Bags

3.12.   Food Waste Film and Bags

3.13.   Consumer Packaging Materials

3.14.   Landfill Cover Film

3.15.   Other Applications

3.16.   Standards and Test Methods

3.17.   Biodegradation Standards and Tests

3.17.1.   American Society for Testing and Materials

3.17.2.   ASTM D5338-93 (Composting)

3.17.3.   ASTM D5209-91 (Aerobic, Sewer Sludge)

3.17.4.   ASTM D5210-92 (Anaerobic, Sewage Sludge)

3.17.5.   ASTM D5511-94 (High-solids Anaerobic Digestion)

3.17.6.   ASTM Tests for Specific Disposal Environments

3.17.7.   International Standards Research

3.17.8.   International Standards Organisation

3.17.9.   European Committee for Normalisation……

3.17.10. ‘OK Compost’ Certification and Logo

3.17.11. Compost Toxicity Tests

3.17.12. Plant Phytotoxicity Testing

3.17.13. Animal Toxicity Test

3.17.14. Difference Between Standards for Biodegradation

3.17.15. Development of Australian Standards

3.17.16. Disposal Environments

3.17.17. Composting Facilities and Soil Burial

3.17.18. Key Factors Defining Compostability

3.17.19. Physical Persistence

3.17.20. Chemical Persistence

3.17.21. Toxicity

3.17.22. Effect on Quality of Compost

3.17.23. Anaerobic Digestion

3.17.24. Waste Water Treatment Plants

3.17.25. Reprocessing Facilities

3.17.26. Landfills

3.17.27. Marine and Freshwater Environments

3.17.28. Litter

3.18.   Plastics Sorting and Reprocessing

3.18.1.   Key Issues

3.18.2.   Recyclable Plastics Sorting Considerations

3.18.3.   Reprocessing Considerations

3.18.4.   Polyolefin Reprocessing

3.18.5.   Polyethylene Reprocessing

3.19.   Potential Positive Environment Impacts

3.19.1.   Composting

3.19.2.   Landfill Degradation

3.19.3.   Energy Use

3.19.4.   Greenhouse Gas Emissions

3.20.   Potential Negative Enviornment Impact

3.20.1.   Pollution of Aquatic Environments

3.20.1.1. Increased Aquatic BOD

3.20.1.2. Water Transportable Degradation Products

3.20.1.3. Risk to Marine Species

3.20.2.   Litter

3.20.3.   Compost Toxicity

3.20.4.   Recalcitrant Residues

3.20.4.1. Aromatic Compounds

3.20.5.   Addigtives and Modifiers

3.20.5.1. Isocyanate Coupling Agents

3.20.5.2. Plasticisers

3.20.5.3. Fillers

3.20.5.4. Catalyst Residues

3.20.6.   Prodegradants and Other Additives

3.20.7.   Source of Raw Materials

3.21.   Development of Australian Standards and Testing

3.21.1.   Life-Cycle Assessment

3.21.2.   Minimisation of Impact on Reprocessing

3.21.3.   Determination of Appropriate Disposal Environments

3.21.4.   Education

3.22.   Conclusions

3.22.1.   Identify standards and test methods for biodegradable plastics in Australia

3.23.    Appendix A

  1. BIOPLASTIC CARRY BAGS

4.1.     A Climate-Friendly Brand

4.2.     Main Applications

4.3.     Reduce CO2 Emission with Bioplastics

4.4.     Which Biobag to Choose?

4.5.     Types of Bio Bag

4.6.     Bio-Recyclable Bags can be Used to Create New Bags

4.7.     Bio-Recyclable Bags do not Pollute the Recycling Process

4.8.     Bio-Compostable Bags Break Down into Humus

4.8.1.     Polyethylene (PE)

4.8.2.     Polylactic Acid (PLA)

4.8.3.     Thermoplastic Starch (TPS)

4.9.     Bioplastics

4.9.1.     Manufacturing Process

4.9.2.     Recyclability of Plastic Materials

4.9.3.     How Recycling Improvements Affect the Manufacturer

  1. BIO-PET

5.1.     Bio-PET as a Replacement for Virgin PET

5.2.     Biodegradable Plastics

5.3.     Biopolymer Plastic

5.4.     Why is Bio-based Polyester Important?

5.5.     The Benefits of Biopolymer Bottles

5.6.     Biopolymer Bottle Types

5.7.     Bottle-to-bottle Recycling

  1. BIO PLASTIC DRINKING STRAWS

6.1.     Types of Biodegradable Plastic Straws

6.1.1.     Wheat Straws

6.1.2.     Bamboo Straws

6.1.3.     The Truth of Sugarcane Bagasse

6.1.4.     Rice Straw

6.2.     Technology Process

6.2.1.     Pulp Bleaching Process

6.2.2.     Pulp Washing Process

6.2.3.     Pulp Cooking Process

6.2.4.     Chemi-Mechanical Pulping

  1. FOOD PACKAGING APPLICATIONS

7.1.     Biobased Packaging Materials

7.2.     Polymers Produced from Biomass

7.3.     Polymers from Bio-derived Monomers

7.4.     Polymers Produced from Micro-Organisms

7.5.     Properties of Packaging Materials

7.5.1.     Gas Barrier Properties

7.5.2.     Moisture Barrier Properties

7.5.3.     Mechanical and Thermal Properties

7.6.     Biodegradability

7.6.1.     Packaging Products from Bio based
Materials

  1. POLYVINYL MODIFIED GUAR-GUM BIOPLASTICS

8.1.     Introduction

8.2.     Modification of Guar Gum

8.3.     Derivatization of Functional Groups

8.4.     PVS Modified Guar Gum

8.5.     Characterization

  1. CORN AND RICE STARCH-BASED BIO-PLASTICS

9.1.     Introduction

9.2.     Materials and Methods

9.3.     Extraction of Starch

9.4.     Preparation of Bioplastics Film

9.5.     Characterization

9.5.1.     Tensile Test

9.5.2.     Thickness Measurement

9.5.3.     Test for Moisture Content

9.5.4.     Water Solubility Test

9.5.5.     Water Contact Angle Measurement

9.5.6.     Biodegradability Test

9.5.7.     Scanning Electron Microscopy (SEM)

9.5.8.     Thermogravimetric Analysis

9.5.9.     Sealing Properties of Bioplastics

  1. BIOPLASTICS PROCESSING OF DRY INGREDIENTS

10.1.   Introduction

10.1.1.   Ingredient Properties Affecting Feedrates and Dry Ingredients Handling

10.1.2.   Storage Hoppers and Ingredient Activation

10.1.3.   Volumetric Feeders

10.1.4.   Vibrating Tray Feeders

10.1.5.   Belt Feeders

10.1.6.   Loss-in-Weight Feeders

10.2.   Start with a Traditional Feeding Device, Example a Screw Feeder

  1. BIOPLASTICS – END-OF-LIFE OPTIONS

11.1.   Recycling

11.1.1.   Mechanical Recycling of Bioplastics

11.2.   Renewable Energy Recovery (incineration)

11.3.   Feedstock Recovery or Chemical Recycling

11.4.   Compost/Biodegradation

11.4.1.   Biodegradable

11.5.   Anaerobic Digestion

11.5.1.   Energy Recovery

11.6.   Communicating End-of-Life Options

  1. CASSAVA BAGS

12.1.   Manufacturing Process

12.2.   Types of Cassava Bags

  1. PLASTICS FROM POTATO WASTE

13.1.   Begin Insert

13.2.   Plastics From Potato Waste

13.3.   Starch to Glucose to Lactic Acid

13.4.   Lactic Acid into Plastic

13.5.   Potential Markets

  1. BIODEGRADABLE SYNTHETIC POLYMERS

14.1.   Formula of the Product

14.2.   Introduction

14.3.   Objective of the Present Invention

14.4.   Preferred Embodiments

14.5.   Claims

14.6.   Conclusion

  1. BIODEGRADABLE PLASTICS FROM RENEWABLE SOURCES

15.1.   Analysis

15.2.   Plastics and the Environment

15.3.   The Move to Renewable Sources

15.4.   Extending the Recycling Loop

15.5.   Biopolymers, Conventional Plastics and Biodegradable Plastics

15.6.   The Plastics Sector

15.7.   Packaging

15.8.   Plastic Films

15.9.   Structure of the Business

15.10. Recent Developments

15.11. Biodegradability and Compostability

15.12. Challenges Ahead

  1. BIODEGRADABLE PLASTICS FROM WHEAT STARCH AND POLYLACTIC ACID (PLA)

16.1.   Introduction and Background

16.2.   Results from Previous Funding

16.3.   Rational and Significance

16.4.   Procedures/Methodology

16.5.   Other Related Works

  1. STARCH BASED BIODEGRADABLE PLASTICS

17.1.   Introduction

17.2.   Technology Commercialization Model

17.2.1.   Application of Technology Commercialization Model

17.3.   Starch-based Biodegradable Plastics – Commercialization Case Studies

17.4.   Conclusion

 

  1. BIO-NANOCOMPOSITES FOR PACKAGING APPLICATIONS

18.1.   Structure of Nano Composites Based on Natural Nano Fillers

18.1.1.   Layered Silicate Filled Nano Composites

18.1.2.   Cellulose Nanoparticles Filled Nano Composites

18.1.3.   Starch Nano Crystals Filled Nano Composites

18.2.   Properties of Bio-Nano Composites

18.2.1.   PLA Based Bio-Nano Composites

18.2.2.   Mechanical Properties

18.2.3.   Barrier Properties

18.3.   Starch Based Nano Composites

18.3.1.   Elaboration Processes

18.3.2.   Effect of the Surfactant and Plasticizer on the Structure

18.3.3.   Mechanical Properties

18.4.   Optical Properties

18.5.   PHA Based Bio-Nano Composites

18.6.   Proteins Based Nanocomposites

  1. POLYHYDROXYALKANOATES (PHAS)

19.1.   What are the General Characteristics of PHAs?

19.2.   What are the Benefits of Bioplastics and PHAs in Particular?

19.3.   What Applications have Utilized or can Utilize PHAs?

19.4.   Materials and Methods

19.4.1.   Reagents Preparation

19.4.2.   Media Preparation

19.4.3.   Sample Collection

19.4.4.   Waste Collection

19.4.5.   Isolation and Screening

19.4.6.   Submerged Fermentation for PHA Production

19.4.7.   Extraction of PHA Produced during Fermentation

19.4.8.   Quantification of Produced PHA

19.4.9.   Characterization of the Extracted PHA by FTIR

19.4.10. Molecular Identification of the Most Efficient PHA Producing Strain

19.4.11. Optimization of Cultural Conditions

19.4.12. PHA Film Preparation

19.4.13. Statistical Analysis

  1. POLYLACTIC ACID (PLA)

20.1.   Introduction

20.1.1.   PLA Film

20.1.2.   PLA Trays and Other Thermoformed Products

20.1.3.   PLA Bottles

20.1.4.   Other Packaging Products

20.2.   (Biodegradable) Starch based Plastics

20.2.1.   Starch based Films

20.2.2.   Starch based Trays and Other Thermoformed Products

20.2.3.   Other Packaging Products

20.3.   Cellophane Films

20.4.   Biodegradable (and bio-based) Polyesters

20.4.1.   Flexible Films based on Biodegradable Polyesters

20.4.2.   Trays and Other Thermoformed Products

20.4.3.   Other Packaging Products

20.5.   Manufacture of Polylactic Acids

20.6.   Influence of Optical Composition

  1. BIODEGRADABLE TABLEWARE

21.1.   Sugarcane Bagasse

21.1.1.   Characteristics

21.1.2.   Advantages

21.1.3.   Manufacturing Process

21.2.   Cornstarch Tableware

21.2.1.   Advantages

21.3.   Bamboo Tableware

21.3.1.   Features

21.3.2.   Making Disposable Bamboo Tableware

21.3.3.   Durable or Reusable

21.3.4.   Benefits

21.4.   Palm Leaf Tableware

21.4.1.   Features

21.4.2.   Eco-friendly

21.4.3.   Manufacturing Process

  1. BIODEGRADABLE PLATES

22.1.   Characteristics of Bagasse Products

22.2.   Benefits of Using Biodegradable Plates

22.2.1.   Saves Non-renewable Sources of Energy

22.2.2.   Reduces Carbon Emission

22.2.3.   Consumes Less Energy

22.2.4.   Provides an Eco-Friendly Solution

22.3.   Various Types of Disposable Plates

22.4.   Disposable Bamboo Plates

22.5.   Palm Leaf Plates

22.6.   Bagasse Plates/ Sugarcane Plates

22.6.1.   What is Bagasse? How is it used to Make Plates and Bowls?

22.7.   Manufacturing Stages

22.7.1.   Pulping

22.7.2.   Forming

22.7.3.   Shaping and Drying

22.7.4.   Edge cutting and Sterilization

22.7.5.   Packaging

  1. BIODEGRADABLE TOILET PAPER

23.1.   Types

  1. BIODEGRADABLE POLYOLEFINS

24.1.   Introduction

24.1.1.   Results and Discussion

24.1.2.   General Procedure for Grafting of Sugars
onto Poly (styrene Maleic Anhydride)

24.1.3.   Determination of Biodegradability of Polymers Using Aerobic Microorganisms

24.2.   Supplementary Data

24.2.1.   Weight Loss Data

24.2.2.   FTIR Spectral Data

24.2.3.   Use of Colorimetry for Determination of the Sugar Content in the Poly(styrene Maleic Anhydride) Linked with Glucose: The Phenol-Sulfuric Acid Reaction Method

24.2.4.   Quantification of Carbohydrate Groups Linked to Poly(styrene-Maleic Anhydride) by Silylation of the Carbohydrate Hydroxyl’s and NMR Anlysis of the Spectrum

24.2.5.   Molecular Weight Decrease After Biodegradation by GPC

24.2.6.   Mechanism of Reaction of Poly(styrene Maleic Anhydride) with the Sugar

  1. STARCH FOR PACKAGING APPLICATIONS………. 376

25.1.   Introduction

25.2.   Bioplastic as Packaging Material

25.2.1.   Why Use Starch as Packaging Material?

25.3.   Characteristics of a Good Packaging Material

25.4.   Recent Advances in Starch Based Composites for Packaging Applications

25.5.   Plasticized Starch and Fiber Reinforced Composites for Packaging Applications

25.6.   Protein-Starch Based Plastic Produced by Extrusion and Injection Molding

25.7.   Starch-based Completely Biodegradable Polymer Materials

25.7.1.   Starch: The Future of Sustainable Packaging

  1. PLANT LAYOUT AND PROCESS FLOW CHART & DIAGRAM
  2. PHOTOGRAPHS OF MACHINERY WITHSUPPLIER’S CONTACT DETAILS

27.1.   Bio Degradable Bag Machine

27.2.   Corn Starch Biodegradable Bag Machine

27.3.   Biodegradable Compostable Bags Machine

27.4.   Biodegradable Carry Bag Cutting and Sealing Machine

27.5.   Biodegradable Carry Bag Machine

27.6.   Biodegradable Plastic Film Machine

27.7.   Blown Film Machine

27.8.   Areca Leaf Plate Machine

27.9.   Betel Leaf Plate Machine

27.10. Areca Food Container Machine

27.11. Bagasse Tableware Pulp Molding Machine

27.12. Pulp Molded Tableware Machinery

27.13. Eggs Pulp Tray Machine

28.14. Biodegradable Pulp Cup Rotary Machine

29.15. Biodegradable Paper Straw Making Machine

 Read Similar Articles: Biodegradable products

 

Market Outlook

The worldwide bioplastics market is predicted to increase at a CAGR of 17.1 percent over the next five years. The packaging industry’s rising product demand will propel the market even higher. By Applications, Packaging, Agriculture and Consumer Goods, Packaging is the chief use for biodegradable plastics. Wherein flexible packaging uses biodegradable plastics, large multinationals in the consumer-packaged goods, retailers, and foodservice sectors have also made progress or declared intentions to scale biodegradable plastic usage dramatically.

 

Related Feasibility Study Reports: Biodegradable Products, Recyclable, Disposable, Eco-Friendly Plastics, Bioplastics, Compostable, Biodegradable Packaging for Food Products, Bio-based Polymers, Oxo-biodegradable Plastics, Bio-nanocomposites using Maize, Corn, Sugarcane Bagasse

 

Consequently, drive the demand for biodegradable packaging for fresh produce and food cutlery and compostable bags across the globe. In addition, several e-commerce giants have also prompted a switch to biodegradable packaging, encouraging the biodegradable demand in online goods and food delivery. Similarly, agriculture also uses biodegradable plastics. The agricultural mulching film is used to improve crop yield in many countries.

 

Related Books: Environmentally Friendly, Eco-Friendly Products, Natural Products, Biodegradable Plastics, Natural Dyes and Pigments, Jute Products, Natural Fibers

 

The traditional mulching film is difficult to collect from the field and can lead to severe plastic pollution in the soil. The biodegradable mulching film has, therefore, been tested and developed to be an alternative. Though its soil biodegradability and consequences are not fully understood, many countries have applied it to a larger scale.

The book covers a wide range of topics connected to bioplastics and biodegradable products, as well as their manufacturing processes. It also includes contact information for machinery suppliers, as well as images of equipment and plant layout.

 

 

A comprehensive reference to manufacturing and entrepreneurship in the bioplastics and biodegradable products business. Bioplastics & Biodegradable Products Manufacturing Handbook (Bioplastic Carry Bags, Bio-PET, Bio Plastic Drinking Straws, Corn and Rice Starch-Based Bio-Plastics, Food Packaging Applications, Cassava Bags, Biodegradable Tableware, Biodegradable Plates, Biodegradable Toilet Paper, Starch Based Biodegradable Plastics, Polylactic Acid (PLA)) is a one-stop shop for everything you need to know about the bioplastics and biodegradable products manufacturing industry, which is ripe with potential for manufacturers, merchants, and entrepreneurs. This is the only comprehensive guide to commercial bioplastics and biodegradable products manufacture. It provides a feast of how-to knowledge, from concept through equipment purchase.

 

See More Links:

Exit mobile version